Spectral algorithm without trimming or cleaning works for exact recovery in SBM

Yiqiao (Joe) Zhong

Princeton University

with Emmanuel Abbe, Jianqing Fan and Kaizheng Wang

January 11, 2018

イロト イポト イヨト イヨト ヨ

/ 24

Graphs are everywhere

Graphs are everywhere

Graphs are everywhere

• Let G = (V, E) be a graph with *n* vertices, i.e., |V| = n.

- Let G = (V, E) be a graph with *n* vertices, i.e., |V| = n.
- <u>Goal</u> : partition the vertices into several blocks (subsets) such that some criterion is satisfied.

- Let G = (V, E) be a graph with *n* vertices, i.e., |V| = n.
- <u>Goal</u> : partition the vertices into several blocks (subsets) such that some criterion is satisfied.

- Let G = (V, E) be a graph with *n* vertices, i.e., |V| = n.
- <u>Goal</u> : partition the vertices into several blocks (subsets) such that some criterion is satisfied.

• The deterministic approach vs. statistical model approach.

/ 24

Stochastic Block Model (SBM): (two equal-sized blocks)
 <u>Goal</u>: recover unknown index set *J* ∈ [*n*] with |*J*| = *n*/2.
 Observations:

$$egin{aligned} & A_{ij} \sim \left\{ egin{aligned} & Ber(p_n), & ext{ if } i,j \in J ext{ or } i,j \in J^c \ & Ber(q_n), & ext{ otherwise} \end{aligned}
ight. \end{aligned}$$

for all $i \leq j$. Assume that $p_n \geq q_n$. Allow self-loops.

Stochastic Block Model (SBM): (two equal-sized blocks)
 <u>Goal</u>: recover unknown index set *J* ∈ [*n*] with |*J*| = *n*/2.
 Observations:

$$egin{aligned} egin{aligned} \mathsf{A}_{ij} &\sim egin{cases} & extsf{Ber}(p_n), & extsf{ if } i,j \in J extsf{ or } i,j \in J^c \ & extsf{Ber}(q_n), & extsf{ otherwise} \end{aligned}$$

for all $i \leq j$. Assume that $p_n \geq q_n$. Allow self-loops.

Phase transitions

 Equivalently, recover (estimate) block membership vector x ∈ {±1}ⁿ.

Phase transitions

- Equivalently, recover (estimate) block membership vector x ∈ {±1}ⁿ.
- Exact recovery find $\hat{x} = \hat{x}(A)$ such that $\hat{x} = x$ w.p. 1 o(1).

Phase transitions

- Equivalently, recover (estimate) block membership vector x ∈ {±1}ⁿ.
- Exact recovery find $\hat{x} = \hat{x}(A)$ such that $\hat{x} = x$ w.p. 1 o(1).
- If $p_n = a \log n/n$, $q_n = b \log n/n$, then <u>information limit</u> for exact recovery:

$$\sqrt{a}-\sqrt{b}>\sqrt{2}.$$

6/24

No estimator achieves exact recovery if $\sqrt{a} - \sqrt{b} < \sqrt{2}$.

- Equivalently, recover (estimate) block membership vector x ∈ {±1}ⁿ.
- Exact recovery find $\hat{x} = \hat{x}(A)$ such that $\hat{x} = x$ w.p. 1 o(1).
- If $p_n = a \log n/n$, $q_n = b \log n/n$, then **information limit** for exact recovery:

$$\sqrt{a} - \sqrt{b} > \sqrt{2}.$$

No estimator achieves exact recovery if $\sqrt{a} - \sqrt{b} < \sqrt{2}$.

• Related phase transition: weak recovery (detection): find \hat{x} such that $\frac{1}{n} \# \{ i \in [n] : \hat{x}_i = x_i \} > 0.5 + \varepsilon$ w.p. 1 - o(1).

• Lots of works in the literature.

- Lots of works in the literature.
- Efficient methods that works down to the threshold:

- Lots of works in the literature.
- Efficient methods that works down to the threshold:
 - Semidefinite relaxation;
 - Spectral method with local refinement.

- Lots of works in the literature.
- Efficient methods that works down to the threshold:
 - Semidefinite relaxation;
 - Spectral method with local refinement.
- (Incomplete) references: Abbe et al. [2014], Abbe and Sandon [2015], Yun and Proutiere [2016]

- Lots of works in the literature.
- Efficient methods that works down to the threshold:
 - Semidefinite relaxation;
 - Spectral method with local refinement.
- (Incomplete) references: Abbe et al. [2014], Abbe and Sandon [2015], Yun and Proutiere [2016]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

7/24

• One-shot spectral method works?

• Rank-2 structure (up to permutation):

$$\mathbb{E}\boldsymbol{A} = \begin{pmatrix} p_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & q_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} \\ q_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & p_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} \end{pmatrix} \cdot \begin{array}{c} \boldsymbol{J} \\ \boldsymbol{J}^{\boldsymbol{C}} \end{pmatrix}$$

The first eigenvector $u_1^* = \frac{1}{\sqrt{n}} \mathbf{1}_n$; the second

• Rank-2 structure (up to permutation):

$$\mathbb{E}\boldsymbol{A} = \begin{pmatrix} p_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & q_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} \\ q_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & p_n \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} \end{pmatrix} \cdot \begin{array}{c} \boldsymbol{J} \\ \boldsymbol{J}^{\boldsymbol{C}} \end{pmatrix}$$

The first eigenvector $u_1^* = \frac{1}{\sqrt{n}} \mathbf{1}_n$; the second

$$u_2^* = \frac{1}{\sqrt{n}} (\mathbf{1}_{n/2} ; -\mathbf{1}_{n/2}).$$

 $J \qquad J^c$

・ロト・4回ト・4回ト・4回ト・4回ト

8/24

• Target: *u*₂, i.e., the second eigenvector of *A*.

• Good news for exact recovery.

• Good news for exact recovery.

• recall
$$p_n = a \log n/n$$
, $q_n = b \log n/n$, so $\lambda_1^* = \frac{a+b}{2} \log n$,
 $\lambda_2^* = \frac{a-b}{2} \log n$.

• Good news for exact recovery.

• recall
$$p_n = a \log n/n$$
, $q_n = b \log n/n$, so $\lambda_1^* = \frac{a+b}{2} \log n$,
 $\lambda_2^* = \frac{a-b}{2} \log n$.

• eigenvalues preserve ordering:

• Good news for exact recovery.

• recall
$$p_n = a \log n/n$$
, $q_n = b \log n/n$, so $\lambda_1^* = \frac{a+b}{2} \log n$,
 $\lambda_2^* = \frac{a-b}{2} \log n$.

• eigenvalues preserve ordering:

• Weyl's inequality + Feige-Ofek's¹: w.h.p

$$\|A - \mathbb{E}A\|_2 = O(\sqrt{\log n}).$$

• Good news for exact recovery.

• recall
$$p_n = a \log n/n$$
, $q_n = b \log n/n$, so $\lambda_1^* = \frac{a+b}{2} \log n$, $\lambda_2^* = \frac{a-b}{2} \log n$.

• eigenvalues preserve ordering:

• Weyl's inequality + Feige-Ofek's¹: w.h.p

$$\|A - \mathbb{E}A\|_2 = O(\sqrt{\log n}).$$

Contrast with sparser regime (weak recovery)
 See Feige and Ofek [2005].
 9/24

• Implies consistency: $|\langle u_2^*, u_2 \rangle| \xrightarrow{p} 1$.

<ロト < 昂ト < 言ト < 言ト 是に のへで 10/24

- Implies consistency: $|\langle u_2^*, u_2 \rangle| \xrightarrow{p} 1$.
- So, 1 o(1) fraction of vertices have correct signs...but doesn't solve exact recovery.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

10/24

- Implies consistency: $|\langle u_2^*, u_2 \rangle| \xrightarrow{p} 1$.
- So, 1 o(1) fraction of vertices have correct signs...but doesn't solve exact recovery.
- Need uniform control. Key insight:

- Implies consistency: $|\langle u_2^*, u_2 \rangle| \xrightarrow{p} 1$.
- So, 1 o(1) fraction of vertices have correct signs...but doesn't solve exact recovery.
- Need <u>uniform</u> control. Key insight:

10/24

under the ℓ_{∞} norm.

- Implies consistency: $|\langle u_2^*, u_2 \rangle| \xrightarrow{p} 1$.
- So, 1 o(1) fraction of vertices have correct signs...but doesn't solve exact recovery.
- Need <u>uniform</u> control. Key insight:

10/24

under the ℓ_{∞} norm.

• That is,
$$\mathbf{u_2} = \frac{\mathbf{Au_2}}{\lambda_2} \approx \frac{\mathbf{Au_2^*}}{\lambda_2^*}$$
.

Left: From a typical realization of *A*, distribution of 5000 coordinates. **Right:** From 100 realizations, three errors (1) $\sqrt{n} ||u_2 - u_2^*||_{\infty}$ (2) $\sqrt{n} ||Au_2^*/\lambda_2^* - u_2^*||_{\infty}$ (3) $\sqrt{n} ||u_2 - Au_2^*/\lambda_2^*||_{\infty}$.

Theorem

If $A \sim \text{SBM}(n, a \frac{\log n}{n}, b \frac{\log n}{n}, J)$, then with probability $1 - O(n^{-3})$ we have

$$\min_{s \in \{\pm 1\}} \|u_2 - sAu_2^* / \lambda_2^*\|_{\infty} \leq \frac{C}{\sqrt{n} \log \log n}$$

where C = C(a, b) is some constant only depending on a and b.

Let $\widehat{x}_{eig}(A) = \operatorname{sign}(u_2)$ be the simple eigenvector estimator.

Let $\widehat{x}_{eig}(A) = \operatorname{sign}(u_2)$ be the simple eigenvector estimator.

Corollary

Suppose a > b > 0 with $\sqrt{a} \neq \sqrt{b} + \sqrt{2}$. Then, whenever the MLE is successful, in the sense that $\hat{x}_{MLE} = x$ (up to sign) with probability 1 - o(1), we have

$$\widehat{x}_{eig}(A) = \widehat{x}_{MLE}(A) = x$$

with probability 1 - o(1), where x is the sign indicator of the true communities.

イロト イポト イヨト イヨト ヨ

13/24

Eigenvector analysis: a formal setup

<ロト < 団ト < 巨ト < 巨ト < 巨ト < 巨ト < 巨ト < 巨 のへの 14/24

Eigenvector analysis: a formal setup

<u>Random matrix</u>: $A \in \mathbb{R}^{n \times n}$ symmetric, $(A_{ij})_{i \ge j}$ independent, $\mathbb{E}A = A^*$.

Assume A^* has rank r, r = O(1), and $\lambda_1^* \simeq \lambda_r^*$. Fix $k \in [r]$. How does u_k look like?

Eigenvector analysis: a formal setup

<u>Random matrix</u>: $A \in \mathbb{R}^{n \times n}$ symmetric, $(A_{ij})_{i \ge j}$ independent, $\mathbb{E}A = A^*$.

Assume A^* has rank r, r = O(1), and $\lambda_1^* \simeq \lambda_r^*$. Fix $k \in [r]$. How does u_k look like?

$$\underline{\mathsf{Eigengap}} \colon \Delta^* = \min\{\lambda_{k-1}^* - \lambda_k^*, \ \lambda_k^* - \lambda_{k+1}^*\} \text{ for } k \in [r].$$

Spectral norm concentration: there exists $\gamma = o(1)$ such that $\|A - A^*\|_2 \le \gamma \Delta^*$ w.h.p.

Delocalization (incoherence): $||A^*||_{2\to\infty} \le \gamma \Delta^*$, $||u_k^*||_{\infty} \le \gamma$. ★ $||X||_{2\to\infty} = \max_{m\in[n]} ||X_m||_2$ is the maximum ℓ_2 norm of rows.

Row concentration assumption

<ロト < (日) < (15/24) </td>

Row concentration assumption

 $\varphi : [0, +\infty) \to [0, +\infty)$ non-decreasing, $\varphi(x)/x$ non-increasing on $(0, +\infty)$. For any fixed $w \in \mathbb{R}^n$ and $m \in [n]$,

$$|(\mathbf{A}-\mathbf{A}^*)_{m\cdot}\mathbf{w}| \leq \Delta^* ||\mathbf{w}||_{\infty} \varphi\left(\frac{||\mathbf{w}||_2}{\sqrt{n}||\mathbf{w}||_{\infty}}\right)$$

with probability $1 - o(n^{-1})$. φ is allowed to change with *n*.

Typical choices of ϕ for Gaussian noise and Bernoulli noise.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

15/24

<u>Theorem</u>: Let $s = \text{sgn}(u_k^T u_k^*)$. With probability 1 - o(1), $\|su_k - Au_k^*/\lambda_k^*\|_{\infty} \lesssim (\gamma + \varphi(\gamma))(1 + \varphi(1))\|u^*\|_{\infty}$. Usually $\varphi(1) = O(1)$. Then Au_k^*/λ_k^* approximates u_k well since

$$\|su_k-Au_k^*/\lambda_k^*\|_{\infty}=o(\|u^*\|_{\infty}).$$

Indeed, the first-order approximation (linearization) idea is correct.

<ロト < 昼 > < 目 > < 目 > うへで 17/24

• Proof idea = leave-one-out decoupling + Davis-Kahan's.

- Proof idea = leave-one-out decoupling + Davis-Kahan's.
- $u_k = Au_k/\lambda_k$. Observe: A and u_k are weakly correlated.

- Proof idea = leave-one-out decoupling + Davis-Kahan's.
- $u_k = Au_k/\lambda_k$. Observe: *A* and u_k are weakly correlated.
- For each $m \in [n]$, introduce $n \times n$ matrix

$$[\mathbf{A}^{(m)}]_{ij} = \mathbf{A}_{ij}\mathbf{1}_{\{i \neq m, j \neq m\}}.$$

Let $u_k^{(m)}$ be the eigenvector of $A^{(m)}$.

- Proof idea = leave-one-out decoupling + Davis-Kahan's.
- $u_k = Au_k/\lambda_k$. Observe: *A* and u_k are weakly correlated.
- For each $m \in [n]$, introduce $n \times n$ matrix

$$[\mathbf{A}^{(m)}]_{ij} = \mathbf{A}_{ij}\mathbf{1}_{\{i \neq m, j \neq m\}}.$$

シック・単則・4回・4回・4回・4回・

17/24

Let $u_k^{(m)}$ be the eigenvector of $A^{(m)}$.

- **Decoupling**: independence in *m*th coordinate of $Au_k^{(m)}$.
- Dacis-Kahan: $||u_k u_k^{(m)}||_2$ very small.

Back to SBM, what about the linearized term?

Lemma (E. Abbe, A. Bandeira, G. Hall, 2014)

Suppose a > b, $\{W_i\}_{i=1}^{n/2}$ are *i.i.d* $Ber(\frac{a \log n}{n})$, and $\{Z_i\}_{i=1}^{n/2}$ are *i.i.d.* $Ber(\frac{b \log n}{n})$, independent of $\{W_i\}_{i=1}^{n/2}$. For any $\varepsilon \in \mathbb{R}$, we have the following tail bound:

$$\mathbb{P}\Big(\sum_{i=1}^{n/2} W_i - \sum_{i=1}^{n/2} Z_i \leq \varepsilon \log n\Big) \leq n^{-(\sqrt{a} - \sqrt{b})^2/2 + \varepsilon \log(a/b)/2}$$

18/24

Exact recovery for SBM

Corollary

(i) If $\sqrt{a} - \sqrt{b} > \sqrt{2}$, then there exists $\eta = \eta(a, b) > 0$ and $s \in \{\pm 1\}$ such that with probability 1 - o(1),

$$\sqrt{n}\min_{i\in[n]}sz_i(u_2)_i\geq\eta.$$

As a consequence, our spectral method achieves exact recovery.

(ii) Let the misclassification rate be $r(\hat{z}, z)$. If $\sqrt{a} - \sqrt{b} \in (0, \sqrt{2}]$, then

$${\sf E} r(\widehat{z}, z) \le n^{-(1+o(1))(\sqrt{a}-\sqrt{b})^2/2}.$$

This upper bound matches the minimax lower bound.

y-axis: *a*, x-axis: *b*, red curve: $\sqrt{a} - \sqrt{b} = \pm \sqrt{2}$. Fix n = 300. Heatmap from 100 realizations.

Log plot of misclassification rate. Fix b = 2. x-axis: $a \in [2,8]$, y-axis: $\log r(\hat{x}, x) / \log n$. **Red**: theoretical, **black**: n = 100, **green**: n = 500, **blue**: n = 5000

・ロト・(日)・(日)・(日)・(日)・

21/24

Extension to eigenspaces. ✓

²References: Zhong and Boumal [2017], Chen, Fan, Ma, and Wang [2017],≣etc..≣ = ∽ < ~ 22/24

- Extension to eigenspaces. ✓
- Synchronization problems (\mathbb{Z}_2 -synchronization). \checkmark

- Extension to eigenspaces. ✓
- Synchronization problems (\mathbb{Z}_2 -synchronization). \checkmark
- Matrix completion. 🗸

- Extension to eigenspaces. ✓
- Synchronization problems (\mathbb{Z}_2 -synchronization). \checkmark
- Matrix completion.
- Analyze iterative algorithms.²

Unsolved problems: 🙂

- Extension to eigenspaces. ✓
- Synchronization problems (\mathbb{Z}_2 -synchronization). \checkmark
- Matrix completion.
- Analyze iterative algorithms.²

Unsolved problems: 🙂

• How to analyze normalized Laplacian?

²References: Zhong and Boumal [2017], Chen et al. [201ℤ], etc_𝔅 → (𝔅) → (

- Extension to eigenspaces. ✓
- Synchronization problems (\mathbb{Z}_2 -synchronization). \checkmark
- Matrix completion.
- Analyze iterative algorithms.²

Unsolved problems: 🙂

- How to analyze normalized Laplacian?
- More than two blocks?

Thank you!

<ロ > < @ > < E > < E > 美国 のので 23/24

References I

- E. Abbe and C. Sandon. Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery. In *IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015*, pages 670–688, 2015. doi: 10.1109/FOCS.2015.47. URL http://dx.doi.org/10.1109/FOCS.2015.47.
- Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block model. *arXiv preprint arXiv:1405.3267*, 2014.
- Yuxin Chen, Jianqing Fan, Cong Ma, and Kaizheng Wang. Spectral method and regularized MLE are both optimal for top-K ranking. arXiv preprint arXiv:1707.09971, 2017.
- Uriel Feige and Eran Ofek. Spectral techniques applied to sparse random graphs. *Random Structures & Algorithms*, 27(2):251–275, 2005.
- Se-Young Yun and Alexandre Proutiere. Optimal cluster recovery in the labeled stochastic block model. In Advances in Neural Information Processing Systems, pages 965–973, 2016.
- Yiqiao Zhong and Nicolas Boumal. Near-optimal bounds for phase synchronization. *SIAM Journal on Numerical Analysis (to appear)*, 2017.