Spectral algorithm without trimming or cleaning works for exact recovery in SBM

Yiqiao (Joe) Zhong

Princeton University
with Emmanuel Abbe, Jianqing Fan and Kaizheng Wang

January 11, 2018

Graphs are everywhere

 $2 / 24$

Graphs are everywhere

$2 / 24$

Graphs are everywhere

Graphing The History Of Philosophy

- Let $G=(V, E)$ be a graph with n vertices, i.e., $|V|=n$.

Clustering of graphs

- Let $G=(V, E)$ be a graph with n vertices, i.e., $|V|=n$.
- Goal : partition the vertices into several blocks (subsets) such that some criterion is satisfied.

Clustering of graphs

- Let $G=(V, E)$ be a graph with n vertices, i.e., $|V|=n$.
- Goal : partition the vertices into several blocks (subsets) such that some criterion is satisfied.

Clustering of graphs

- Let $G=(V, E)$ be a graph with n vertices, i.e., $|V|=n$.
- Goal : partition the vertices into several blocks (subsets) such that some criterion is satisfied.

- The deterministic approach vs. statistical model approach.
- Stochastic Block Model (SBM): (two equal-sized blocks)

Goal: recover unknown index set $J \in[n]$ with $|J|=n / 2$. Observations:

$$
A_{i j} \sim \begin{cases}\operatorname{Ber}\left(p_{n}\right), & \text { if } i, j \in J \text { or } i, j \in J^{c} \\ \operatorname{Ber}\left(q_{n}\right), & \text { otherwise }\end{cases}
$$

for all $i \leq j$. Assume that $p_{n} \geq q_{n}$. Allow self-loops.

- Stochastic Block Model (SBM): (two equal-sized blocks)

Goal: recover unknown index set $J \in[n]$ with $|J|=n / 2$. Observations:

$$
A_{i j} \sim \begin{cases}\operatorname{Ber}\left(p_{n}\right), & \text { if } i, j \in J \text { or } i, j \in J^{c} \\ \operatorname{Ber}\left(q_{n}\right), & \text { otherwise }\end{cases}
$$

for all $i \leq j$. Assume that $p_{n} \geq q_{n}$. Allow self-loops.

- Equivalently, recover (estimate) block membership vector $x \in\{ \pm 1\}^{n}$.
- Equivalently, recover (estimate) block membership vector $x \in\{ \pm 1\}^{n}$.
- Exact recovery find $\widehat{x}=\widehat{x}(A)$ such that $\widehat{x}=x$ w.p. $1-o(1)$.

Phase transitions

- Equivalently, recover (estimate) block membership vector $x \in\{ \pm 1\}^{n}$.
- Exact recovery find $\widehat{x}=\widehat{x}(A)$ such that $\widehat{x}=x$ w.p. $1-o(1)$.
- If $p_{n}=a \log n / n, q_{n}=b \log n / n$, then information limit for exact recovery:

$$
\sqrt{a}-\sqrt{b}>\sqrt{2}
$$

No estimator achieves exact recovery if $\sqrt{a}-\sqrt{b}<\sqrt{2}$.

Phase transitions

- Equivalently, recover (estimate) block membership vector $x \in\{ \pm 1\}^{n}$.
- Exact recovery find $\widehat{x}=\widehat{x}(A)$ such that $\widehat{x}=x$ w.p. $1-o(1)$.
- If $p_{n}=a \log n / n, q_{n}=b \log n / n$, then information limit for exact recovery:

$$
\sqrt{a}-\sqrt{b}>\sqrt{2}
$$

No estimator achieves exact recovery if $\sqrt{a}-\sqrt{b}<\sqrt{2}$.

- Related phase transition: weak recovery (detection): find \widehat{x} such that $\frac{1}{n} \#\left\{i \in[n]: \widehat{x}_{i}=x_{i}\right\}>0.5+\varepsilon$ w.p. $1-o(1)$.
- Lots of works in the literature.
- Lots of works in the literature.
- Efficient methods that works down to the threshold:
- Lots of works in the literature.
- Efficient methods that works down to the threshold:
- Semidefinite relaxation;
- Spectral method with local refinement.
- Lots of works in the literature.
- Efficient methods that works down to the threshold:
- Semidefinite relaxation;
- Spectral method with local refinement.
- (Incomplete) references: Abbe et al. [2014], Abbe and Sandon [2015], Yun and Proutiere [2016]
- Lots of works in the literature.
- Efficient methods that works down to the threshold:
- Semidefinite relaxation;
- Spectral method with local refinement.
- (Incomplete) references: Abbe et al. [2014], Abbe and Sandon [2015], Yun and Proutiere [2016]
- One-shot spectral method works?

Does spectral algorithm work?

- Rank-2 structure (up to permutation):

$$
\mathbb{E} \boldsymbol{A}=\left(\begin{array}{ll}
p_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & q_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} \\
q_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & p_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}}
\end{array}\right) \cdot{ }_{J}{ }^{\mathcal{C}}
$$

The first eigenvector $u_{1}^{*}=\frac{1}{\sqrt{n}} \mathbf{1}_{n}$; the second

$$
u_{2}^{*}=\frac{1}{\sqrt{n}}\left(\begin{array}{ccc}
\mathbf{1}_{n / 2} & ; & -\mathbf{1}_{n / 2} \\
J & J^{c}
\end{array}\right)
$$

Does spectral algorithm work?

- Rank-2 structure (up to permutation):

$$
\mathbb{E} \boldsymbol{A}=\left(\begin{array}{ll}
p_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & q_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} \\
q_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}} & p_{n} \mathbf{1}_{\frac{n}{2} \times \frac{n}{2}}
\end{array}\right) \cdot{ }_{J}^{J}
$$

The first eigenvector $u_{1}^{*}=\frac{1}{\sqrt{n}} \mathbf{1}_{n}$; the second

$$
u_{2}^{*}=\frac{1}{\sqrt{n}}\left(\begin{array}{ccc}
\mathbf{1}_{n / 2} & ; & -\mathbf{1}_{n / 2} \\
J & J^{c}
\end{array}\right)
$$

- Target: u_{2}, i.e., the second eigenvector of A.

Does spectral algorithm work?

- Good news for exact recovery.

Does spectral algorithm work?

- Good news for exact recovery.
- recall $p_{n}=a \log n / n, q_{n}=b \log n / n$, so $\lambda_{1}^{*}=\frac{a+b}{2} \log n$, $\lambda_{2}^{*}=\frac{a-b}{2} \log n$.

Does spectral algorithm work?

- Good news for exact recovery.
- recall $p_{n}=a \log n / n, q_{n}=b \log n / n$, so $\lambda_{1}^{*}=\frac{a+b}{2} \log n$, $\lambda_{2}^{*}=\frac{a-b}{2} \log n$.
- eigenvalues preserve ordering:

Does spectral algorithm work?

- Good news for exact recovery.
- recall $p_{n}=a \log n / n, q_{n}=b \log n / n$, so $\lambda_{1}^{*}=\frac{a+b}{2} \log n$, $\lambda_{2}^{*}=\frac{a-b}{2} \log n$.
- eigenvalues preserve ordering:

- Weyl's inequality + Feige-Ofek's ${ }^{1}$: w.h.p

$$
\|A-\mathbb{E} A\|_{2}=O(\sqrt{\log n})
$$

Does spectral algorithm work?

- Good news for exact recovery.
- recall $p_{n}=a \log n / n, q_{n}=b \log n / n$, so $\lambda_{1}^{*}=\frac{a+b}{2} \log n$, $\lambda_{2}^{*}=\frac{a-b}{2} \log n$.
- eigenvalues preserve ordering:

- Weyl's inequality + Feige-Ofek's ${ }^{1}$: w.h.p

$$
\|A-\mathbb{E} A\|_{2}=O(\sqrt{\log n})
$$

- Contrast with sparser regime (weak recovery),
${ }^{1}$ See Feige and Ofek [2005].

Does spectral algorithm work?

- Implies consistency: $\left|\left\langle u_{2}^{*}, u_{2}\right\rangle\right| \xrightarrow{p} 1$.

Does spectral algorithm work?

- Implies consistency: $\left|\left\langle u_{2}^{*}, u_{2}\right\rangle\right| \xrightarrow{p} 1$.
- So, $1-o(1)$ fraction of vertices have correct signs...but doesn't solve exact recovery.

Does spectral algorithm work?

- Implies consistency: $\left|\left\langle u_{2}^{*}, u_{2}\right\rangle\right| \xrightarrow{p} 1$.
- So, $1-o(1)$ fraction of vertices have correct signs...but doesn't solve exact recovery.
- Need uniform control. Key insight:
- Implies consistency: $\left|\left\langle u_{2}^{*}, u_{2}\right\rangle\right| \xrightarrow{p} 1$.
- So, $1-o(1)$ fraction of vertices have correct signs...but doesn't solve exact recovery.
- Need uniform control. Key insight:

$$
\boldsymbol{u}_{2}=\frac{\boldsymbol{A} \boldsymbol{u}_{2}^{*}}{\boldsymbol{\lambda}_{2}^{*}}+\left(\boldsymbol{u}_{2}^{\text {Negligible (higher-orde }}-\frac{\boldsymbol{A} \boldsymbol{u}_{\mathbf{2}}^{*}}{\boldsymbol{\lambda}_{2}^{*}}\right)
$$

under the ℓ_{∞} norm.

- Implies consistency: $\left|\left\langle u_{2}^{*}, u_{2}\right\rangle\right| \xrightarrow{p} 1$.
- So, $1-o(1)$ fraction of vertices have correct signs...but doesn't solve exact recovery.
- Need uniform control. Key insight:

$$
\boldsymbol{u}_{2}=\frac{\boldsymbol{A} \boldsymbol{u}_{2}^{*}}{\lambda_{2}^{*}}+\left(\boldsymbol{u}_{2}^{\text {Negligible (higher-orde }}-\frac{\boldsymbol{A} \boldsymbol{u}_{\mathbf{2}}^{*}}{\boldsymbol{\lambda}_{2}^{*}}\right)
$$

under the ℓ_{∞} norm.

- That is, $\mathrm{u}_{2}=\frac{A \mathrm{u}_{2}}{\lambda_{2}} \approx \frac{A u_{2}^{*}}{\lambda_{2}^{*}}$.

Does spectral algorithm work?

Left: From a typical realization of A, distribution of 5000 coordinates. Right: From 100 realizations, three errors (1) $\sqrt{n}\left\|u_{2}-u_{2}^{*}\right\|_{\infty}$ (2) $\sqrt{n}\left\|A u_{2}^{*} / \lambda_{2}^{*}-u_{2}^{*}\right\|_{\infty}$ (3) $\sqrt{n}\left\|u_{2}-A u_{2}^{*} / \lambda_{2}^{*}\right\|_{\infty}$.

Theorem
If $A \sim \operatorname{SBM}\left(n, a \frac{\log n}{n}, b \frac{\log n}{n}, J\right)$, then with probability $1-O\left(n^{-3}\right)$ we have

$$
\min _{s \in\{ \pm 1\}}\left\|u_{2}-s A u_{2}^{*} / \lambda_{2}^{*}\right\|_{\infty} \leq \frac{C}{\sqrt{n} \log \log n}
$$

where $C=C(a, b)$ is some constant only depending on a and b.

Does spectral algorithm work? Yes!

Let $\widehat{x}_{\text {eig }}(A)=\operatorname{sign}\left(u_{2}\right)$ be the simple eigenvector estimator.

Does spectral algorithm work? Yes!

Let $\widehat{x}_{\text {eig }}(A)=\operatorname{sign}\left(u_{2}\right)$ be the simple eigenvector estimator.

Corollary

Suppose $a>b>0$ with $\sqrt{a} \neq \sqrt{b}+\sqrt{2}$. Then, whenever the MLE is successful, in the sense that $\widehat{x}_{\text {MLE }}=x$ (up to sign) with probability 1 - o(1), we have

$$
\widehat{x}_{e i g}(A)=\widehat{x}_{M L E}(A)=x
$$

with probability $1-o(1)$, where x is the sign indicator of the true communities.

Eigenvector analysis: a formal setup

Random matrix: $A \in \mathbb{R}^{n \times n}$ symmetric, $\left(A_{i j}\right)_{i \geq j}$ independent, $\mathbb{E} A=A^{*}$.

Eigenpairs: $A \sim\left\{\lambda_{j}, u_{j}\right\}_{j=1}^{n}, \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$;

$$
A^{*} \sim\left\{\lambda_{j}^{*}, u_{j}^{*}\right\}_{j=1}^{n}, \lambda_{1}^{*} \geq \lambda_{2}^{*} \geq \cdots \geq \lambda_{n}^{*} .
$$

Assume A^{*} has rank $r, r=O(1)$, and $\lambda_{1}^{*} \asymp \lambda_{r}^{*}$. Fix $k \in[r]$. How does u_{k} look like?

Random matrix: $A \in \mathbb{R}^{n \times n}$ symmetric, $\left(A_{i j}\right)_{i \geq j}$ independent, $\mathbb{E} A=A^{*}$.

Eigenpairs: $A \sim\left\{\lambda_{j}, u_{j}\right\}_{j=1}^{n}, \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$;

$$
A^{*} \sim\left\{\lambda_{j}^{*}, u_{j}^{*}\right\}_{j=1}^{n}, \lambda_{1}^{*} \geq \lambda_{2}^{*} \geq \cdots \geq \lambda_{n}^{*} .
$$

Assume A^{*} has rank $r, r=O(1)$, and $\lambda_{1}^{*} \asymp \lambda_{r}^{*}$. Fix $k \in[r]$. How does u_{k} look like?

Eigengap: $\Delta^{*}=\min \left\{\lambda_{k-1}^{*}-\lambda_{k}^{*}, \lambda_{k}^{*}-\lambda_{k+1}^{*}\right\}$ for $k \in[r]$.
Spectral norm concentration: there exists $\gamma=o(1)$ such that $\left\|A-A^{*}\right\|_{2} \leq \gamma \Delta^{*}$ w.h.p.

Delocalization (incoherence): $\left\|A^{*}\right\|_{2 \rightarrow \infty} \leq \gamma \Delta^{*},\left\|u_{k}^{*}\right\|_{\infty} \leq \gamma$. $\star\|X\|_{2 \rightarrow \infty}=\max _{m \in[n]}\left\|X_{m} \cdot\right\|_{2}$ is the maximum ℓ_{2} norm of rows.

Row concentration assumption
 $15 / 24$
$\varphi:[0,+\infty) \rightarrow[0,+\infty)$ non-decreasing, $\varphi(x) / x$ non-increasing on $(0,+\infty)$. For any fixed $w \in \mathbb{R}^{n}$ and $m \in[n]$,

$$
\left\lvert\,\left(A-A^{*}\right)_{m \cdot w} w \leq \Delta^{*}\|w\|_{\infty} \varphi\left(\frac{\|w\|_{2}}{\sqrt{n}\|w\|_{\infty}}\right)\right.
$$

with probability $1-o\left(n^{-1}\right) . \varphi$ is allowed to change with n.

Typical choices of φ for Gaussian noise and Bernoulli noise.

$$
\left\|s u_{k}-A u_{k}^{*} / \lambda_{k}^{*}\right\|_{\infty} \lesssim(\gamma+\varphi(\gamma))(1+\varphi(1))\left\|u^{*}\right\|_{\infty}
$$

Usually $\varphi(1)=O(1)$. Then $A u_{k}^{*} / \lambda_{k}^{*}$ approximates u_{k} well since

$$
\left\|s u_{k}-A u_{k}^{*} / \lambda_{k}^{*}\right\|_{\infty}=o\left(\left\|u^{*}\right\|_{\infty}\right)
$$

Indeed, the first-order approximation (linearization) idea is correct.

One-slide proof idea
 $17 / 24$

- Proof idea $=$ leave-one-out decoupling + Davis-Kahan's.
- Proof idea $=$ leave-one-out decoupling + Davis-Kahan's.
- $u_{k}=A u_{k} / \lambda_{k}$. Observe: A and u_{k} are weakly correlated.
- Proof idea $=$ leave-one-out decoupling + Davis-Kahan's.
- $u_{k}=A u_{k} / \lambda_{k}$. Observe: A and u_{k} are weakly correlated.
- For each $m \in[n]$, introduce $n \times n$ matrix

$$
\left[A^{(m)}\right]_{i j}=A_{i j} 1_{\{i \neq m, j \neq m\}} .
$$

Let $u_{k}^{(m)}$ be the eigenvector of $A^{(m)}$.

- Proof idea $=$ leave-one-out decoupling + Davis-Kahan's.
- $u_{k}=A u_{k} / \lambda_{k}$. Observe: A and u_{k} are weakly correlated.
- For each $m \in[n]$, introduce $n \times n$ matrix

$$
\left[A^{(m)}\right]_{i j}=A_{i j} \mathbf{1}_{\{i \neq m, j \neq m\}} .
$$

Let $u_{k}^{(m)}$ be the eigenvector of $A^{(m)}$.

- Decoupling: independence in m th coordinate of $A u_{k}^{(m)}$.
- Dacis-Kahan: $\left\|u_{k}-u_{k}^{(m)}\right\|_{2}$ very small.

Back to SBM, what about the linearized term?

Lemma (E. Abbe, A. Bandeira, G. Hall, 2014)

Suppose $a>b,\left\{W_{i}\right\}_{i=1}^{n / 2}$ are i.i.d $\operatorname{Ber}\left(\frac{\operatorname{alog} n}{n}\right)$, and $\left\{Z_{i}\right\}_{i=1}^{n / 2}$ are i.i.d. $\operatorname{Ber}\left(\frac{b \log n}{n}\right)$, independent of $\left\{W_{i}\right\}_{i=1}^{n / 2}$. For any $\varepsilon \in \mathbb{R}$, we have the following tail bound:

$$
\mathbb{P}\left(\sum_{i=1}^{n / 2} W_{i}-\sum_{i=1}^{n / 2} Z_{i} \leq \varepsilon \log n\right) \leq n^{-(\sqrt{a}-\sqrt{b})^{2} / 2+\varepsilon \log (a / b) / 2} .
$$

Exact recovery for SBM

Corollary

(i) If $\sqrt{a}-\sqrt{b}>\sqrt{2}$, then there exists $\eta=\eta(a, b)>0$ and $s \in\{ \pm 1\}$ such that with probability $1-o(1)$,

$$
\sqrt{n} \min _{i \in[n]} s z_{i}\left(u_{2}\right)_{i} \geq \eta
$$

As a consequence, our spectral method achieves exact recovery.
(ii) Let the misclassification rate be $r(\widehat{z}, z)$. If
$\sqrt{a}-\sqrt{b} \in(0, \sqrt{2}]$, then

$$
\mathrm{Er}(\widehat{z}, z) \leq n^{-(1+o(1))(\sqrt{a}-\sqrt{b})^{2} / 2}
$$

This upper bound matches the minimax lower bound.

y-axis: a, x-axis: b, red curve: $\sqrt{a}-\sqrt{b}= \pm \sqrt{2}$. Fix $n=300$. Heatmap from 100 realizations.

Log plot of misclassification rate. Fix $b=2$. x-axis: $a \in[2,8], y$-axis: $\log r(\widehat{x}, x) / \log n$. Red: theoretical, black: $n=100$, green: $n=500$, blue: $n=5000$

Beyond SBM: ;)

- Extension to eigenspaces. \checkmark

Unsolved problems: $;$

[^0]
Beyond SBM: ;)

- Extension to eigenspaces. \checkmark
- Synchronization problems (\mathbb{Z}_{2}-synchronization). \checkmark

Unsolved problems: $;$

[^1]
Beyond SBM: ;)

- Extension to eigenspaces. \checkmark
- Synchronization problems (\mathbb{Z}_{2}-synchronization). \checkmark
- Matrix completion. \checkmark

Unsolved problems: :

[^2]
Beyond SBM: ;)

- Extension to eigenspaces. \checkmark
- Synchronization problems (\mathbb{Z}_{2}-synchronization). \checkmark
- Matrix completion. \checkmark
- Analyze iterative algorithms. ${ }^{2} \checkmark$

Unsolved problems: :

[^3]
Beyond SBM: ;)

- Extension to eigenspaces. \checkmark
- Synchronization problems (\mathbb{Z}_{2}-synchronization). \checkmark
- Matrix completion. \checkmark
- Analyze iterative algorithms. ${ }^{2} \checkmark$

Unsolved problems: :

- How to analyze normalized Laplacian?

[^4]
Beyond SBM: :

- Extension to eigenspaces. \checkmark
- Synchronization problems (\mathbb{Z}_{2}-synchronization). \checkmark
- Matrix completion. \checkmark
- Analyze iterative algorithms. ${ }^{2} \checkmark$

Unsolved problems: :

- How to analyze normalized Laplacian?
- More than two blocks?

[^5]
Thank you!

References I

E. Abbe and C. Sandon. Community detection in general stochastic block models: Fundamental limits and efficient algorithms for recovery. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 670-688, 2015. doi: 10.1109/FOCS.2015.47. URL http://dx.doi.org/10.1109/FOCS.2015.47.

Emmanuel Abbe, Afonso S Bandeira, and Georgina Hall. Exact recovery in the stochastic block model. arXiv preprint arXiv:1405.3267, 2014.

Yuxin Chen, Jianqing Fan, Cong Ma, and Kaizheng Wang. Spectral method and regularized MLE are both optimal for top-K ranking. arXiv preprint arXiv:1707.09971, 2017.

Uriel Feige and Eran Ofek. Spectral techniques applied to sparse random graphs. Random Structures \& Algorithms, 27(2):251-275, 2005.

Se-Young Yun and Alexandre Proutiere. Optimal cluster recovery in the labeled stochastic block model. In Advances in Neural Information Processing Systems, pages 965-973, 2016.
Yiqiao Zhong and Nicolas Boumal. Near-optimal bounds for phase synchronization. SIAM Journal on Numerical Analysis (to appear), 2017.

[^0]: ${ }^{2}$ References: Zhong and Boumal [2017], Chen, Fan, Ma, and Wang [2017],-etc.

[^1]: ${ }^{2}$ References: Zhong and Boumal [2017], Chen et al. [2017], etc:

[^2]: ${ }^{2}$ References: Zhong and Boumal [2017], Chen et al. [2017], etc:

[^3]: ${ }^{2}$ References: Zhong and Boumal [2017], Chen et al. [2017], etc.

[^4]: ${ }^{2}$ References: Zhong and Boumal [2017], Chen et al. [2017], etc:

[^5]: ${ }^{2}$ References: Zhong and Boumal [2017], Chen et al. [2017], etc:

