(Near-)optimal Results for Phase Synchronization

Phase (angular) synchronization

Problem formulation: estimate unknown parame gles) $\theta_1, \theta_2, \ldots, \theta_n \in [0, 2\pi)$ based on pairwise measured $y_{\ell k} = \text{noisy version of } \theta_{\ell} - \theta_k \mod 2\pi,$

where $1 \leq \ell < k \leq n$.

Example: Time synchronization

Model: modeling signal $z = (z_1, \ldots, z_n)^T \in \mathbb{C}^n$ and d $C_{\ell k} = \bar{z}_{\ell} z_k + \sigma W_{\ell k}, \qquad \forall \ell > k$

where $W_{\ell k} \sim N_{\mathbb{C}}(0, 1)$; or in matrix form

 $C = zz^* + \sigma W$, with $|z_k| = 1, \forall k \in [n]$.

Nonconvexity: nonconvex constraints; hard to study

Taming nonconvexity?

Consider the standard recipe—semidefinite program (SDP) relaxation: the MLE \hat{x} is a solution to

$$\max_{X \in \mathbb{C}^{n \times n}, X = X^*} \operatorname{Tr}(CX)$$

subject to diag $(X) = \mathbf{1}, X \succeq 0$. $\operatorname{rank}(X) = 1$

Observations: low rank (signal matrix) + random noise

- the 'signal' zz^* is a rank-one matrix with $\lambda_{\max}(zz^*) = n$,
- the 'noise' has magnitude $||W|| = \Theta(\sqrt{n})$ w.h.p.,
- we expect phase transition occurs at $\sigma = \Theta(\sqrt{n})$ (see below).

Figure 1: Red: $\sigma = \frac{1}{18}n^{1/4}$; Blue: $\sigma = \sqrt{\frac{n}{\log n}}$ (Figure from [2])

Difficulty: however, previous works can only do $\sigma = O(\sigma^{1/4})$.

• Hard to analyze statistical dependence between \hat{x} and W. • More generally, how to study randomness with nonconvexity?

Yiqiao Zhong and Nicolas Boumal

Princeton University

n	Convergence analysis via d
eters (an- ements:	Generalized power method (GPM): (1) Set x^0 to be a leading eigenvector of C w
	(2) For $t = 0, 1,,$ update $(x^{t+1})_k = \frac{(Cx^t)}{ (Cx^t) }$
	▲ Decoupling analysis of GPM gives new alg Algorithmic guarantee:
	If $\sigma = \mathcal{O}(\sqrt{n/\log n})$, with high probability solution $\hat{x}\hat{x}^*$, and GPM converges linearly
1 /	Statistical guarantee:
data	
	If $\sigma = \mathcal{O}(\sqrt{n/\log n})$, with high probability $\ \hat{x} - z\ _2 = \mathcal{O}(\sigma),$ $\ \hat{x} - z\ _{\infty} = \mathcal{O}(\sigma_V)$
y MLE.	
	 results are optimal (except for a log term); advantages of iterative algorithm;

• strong uniform statistical guarantee (ℓ_{∞} bound). \blacktriangle Key idea: introduce additional *n* decoupling sequences (or, leave-one-out) sequences) only for analysis. For each $m \in [n]$, define $C^{(m)} := zz^* + \sigma W^{(m)}$, with

$$W_{k\ell}^{(m)} = W_{k\ell} \mathbf{1}_{\{k \neq m\}} \mathbf{1}_{\{\ell \neq m\}}, \quad x^{0,m} :=$$

Define GPM operator: $(\mathcal{T}x)_k = \frac{(Cx)_k}{|(Cx)_k|}$. Sim

$$\Delta^{t,m} \qquad \mathcal{N}_{2}^{\chi^{\alpha}}$$

 $\mathcal{N}_1 = \{ x \in \mathbb{C}^n : \|Wx\|_{\infty} \le \kappa_2 \sqrt{n \log n} \}, \quad \mathcal{N}_2 = \{ x \in \mathbb{C}^n : d_2(x, z) \le \kappa_3 \sqrt{n} \}.$

decoupling sequences

A simple and fast approach. with $||x^0||_2 = \sqrt{n}$.

gorithmic/statistical understanding.

y for large n, SDP admits a unique to \hat{x} (up to phase).

for large n, and $\log n/n$).

leading eigenvector of $C^{(m)}$

milarly,
$$(\mathcal{T}^{(m)}x)_k := \frac{(C^{(m)}x)_k}{|(C^{(m)}x)_k|}$$

Key: The *m*-th sequence $\{x^{t,m}\}_{t=0}^{\infty}$ is independent of $\{W_{mk}\}_{k=1}^{n}$ (measurements related to m-th signal) guaranteed by construction. Then, we establish • all iterates lie in contraction region \mathcal{N} ;

- done by induction.

If
$$\sigma = \mathcal{O}(\sqrt{n/\log \sigma})$$

Motivates analyses for other problems:

- high-dimensional factor models. [4]
- and more...

References:

- (Received 2018 SIAM Student Paper Prize)
- Programming 163.1-2 (2017): 145-167.
- arXiv:1709.09565 (2017).
- Learning Research (to appear).

Why decoupling?

• $\Delta^{t+1,m} \leq \rho \Delta^{t,m} + \text{small discrepancy error, where } \rho < 1.$

Contraction mapping theorem idea \Rightarrow convergence \checkmark All $x^t \in \mathcal{N} \Rightarrow \ell_{\infty}$ error + dual feasibility (certificate optimality)

Spectral Initialization: same idea works for eigenvector initializer x^0 (with similar guarantees) \rightarrow sharp ℓ_{∞} bounds.

> (gn), then, w.h.p. for large n, $||x^0 - z||_2 = \mathcal{O}(\sigma)$, and $x^0 - z \|_{\infty} = \mathcal{O}(\sigma \sqrt{\log n/n}).$

• vanilla spectral algorithm achieves exact recovery in SBM. [3] • sharp entrywise bounds for matrix completion. [3]

[1] Zhong, Yiqiao, and Nicolas Boumal. "Near-Optimal Bounds for Phase Synchronization." SIAM Journal on Optimization 28.2 (2018): 989-1016.

[2] Bandeira, Afonso S., Nicolas Boumal, and Amit Singer. "Tightness of the maximum" likelihood semidefinite relaxation for angular synchronization." Mathematical

[3] Abbe, Emmanuel, Jianqing Fan, Kaizheng Wang, and Yiqiao Zhong. "Entrywise Eigenvector Analysis of Random Matrices with Low Expected Rank." arXiv preprint

[4] Fan, Jianqing, Weichen Wang, and Yiqiao Zhong. "An ℓ_{∞} Eigenvector Perturbation" Bound and Its Application to Robust Covariance Estimation." Journal of Machine