(Near-)optimal Results for Phase Synchronization

Yiqiao Zhong

Princeton University

with Nicolas Boumal (PACM)

SIAM AN18, Portland, July 10, 2018

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Unknown parameters (angles): $\theta_1, \theta_2, \dots, \theta_n \in [0, 2\pi)$.

• Unknown parameters (angles): $\theta_1, \theta_2, \ldots, \theta_n \in [0, 2\pi)$.

• **Goal**: estimate these parameters from pairwise measurements (offsets):

 $y_{\ell k}$ = noisy version of $\theta_{\ell} - \theta_k \mod 2\pi$,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3/23

where $1 \le \ell < k \le n$.

Motivation

• Time synchronization.

<ロ>・日 ・ ・ 日 ・ ・ 王 ・ 王 ・ 9 へ () 4/23

Motivation

• Time synchronization.

 More generally, a group instead of [0, 2π). Applications: Cryo-EM (Electron cryomicroscopy), calibration of cameras, robotics.

• Re-formulate our problem:

```
C_{\ell k} = noisy version of \overline{z}_{\ell} z_k,
```

```
where z_k = \exp(i\theta_k).
```

• Re-formulate our problem:

 $C_{\ell k}$ = noisy version of $\bar{z}_{\ell} z_k$,

where $z_k = \exp(i\theta_k)$.

• The model:

$$C_{\ell k} = \bar{z}_{\ell} z_k + \sigma W_{\ell k}, \qquad \forall \ell > k$$

where $W_{\ell k} \sim N_{\mathbb{C}}(0, 1)$. Assume all pairs of measurements.

• Re-formulate our problem:

 $C_{\ell k}$ = noisy version of $\overline{z}_{\ell} z_k$,

where $z_k = \exp(i\theta_k)$.

• The model:

$$C_{\ell k} = \bar{z}_{\ell} z_k + \sigma W_{\ell k}, \qquad \forall \ell > k$$

where $W_{\ell k} \sim N_{\mathbb{C}}(0, 1)$. Assume all pairs of measurements.

• The matrix form:

$$C = zz^* + \sigma W,$$

where $z \in \mathbb{C}^n$ with $|z_k| = 1$; $W_{kk} = 0$, $W_{k\ell} = \overline{W}_{\ell k}$.

<ロ > < 部 > < き > < き > ミ = う へ で 5/23 • Deriving the MLE: minimize $||C - xx^*||_F^2$ over $x \in \mathbb{C}^n$ with $|x_k| = 1$.

- Deriving the MLE: minimize $||C xx^*||_F^2$ over $x \in \mathbb{C}^n$ with $|x_k| = 1$.
- Equivalently,

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$
 (P)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Deriving the MLE: minimize $||C xx^*||_F^2$ over $x \in \mathbb{C}^n$ with $|x_k| = 1$.
- Equivalently,

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$
 (P)

• Denote the solution by \hat{x} . Up to a global phase.

- Deriving the MLE: minimize $||C xx^*||_F^2$ over $x \in \mathbb{C}^n$ with $|x_k| = 1$.
- Equivalently,

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$
 (P)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Denote the solution by \hat{x} . Up to a global phase.
- Information limit: $\sigma = \sqrt{n}$.

- Deriving the MLE: minimize $||C xx^*||_F^2$ over $x \in \mathbb{C}^n$ with $|x_k| = 1$.
- Equivalently,

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$
 (P)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Denote the solution by \hat{x} . Up to a global phase.
- Information limit: $\sigma = \sqrt{n}$.
- Our goal: under $\sigma = \tilde{O}(\sqrt{n})$,
 - Develop efficient algorithms that find \hat{x} ;
 - Derive statistical guarantees.

• Recall the MLE \hat{x} is a solution to:

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$
 (P)

• Recall the MLE \hat{x} is a solution to:

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$
 (P)

Trouble...nonconvexity!

• Recall the MLE \hat{x} is a solution to:

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$
 (P)

Trouble...nonconvexity!

• Indeed, NP-hard in general. Zhang and Huang [2006]

• However...may be tractable under our model.

- However...may be tractable under our model.
- Lifting the problem to higher dimensional space:

$$X = xx^* \succeq 0$$

• Quadratic \Rightarrow Linear:

$$x^*Cx \Rightarrow \operatorname{Tr}(CX), \qquad |x_k| = 1 \Rightarrow X_{kk} = 1$$

・ロト < 得 ト < 言 ト < 言 ト < 見 つ の ()

- However...may be tractable under our model.
- Lifting the problem to higher dimensional space:

$$X = xx^* \succeq 0$$

• Quadratic \Rightarrow Linear:

$$x^*Cx \Rightarrow \operatorname{Tr}(CX), \qquad |x_k| = 1 \Rightarrow X_{kk} = 1$$

Equivalently,

 $\max_{X \in \mathbb{C}^{n \times n}, X = X^*} \operatorname{Tr}(CX) \text{ subject to } \operatorname{diag}(X) = 1, X \succeq 0,$ $\operatorname{rank}(X) = 1.$

<ロト < 昂 > < 言 > < 言 > 是 = うへで 8/23

- However...may be tractable under our model.
- Lifting the problem to higher dimensional space:

$$X = xx^*$$

• Quadratic \Rightarrow Linear:

$$x^*Cx \Rightarrow \operatorname{Tr}(CX), \qquad |x_k| = 1 \Rightarrow X_{kk} = 1$$

semidefinite relaxation:

 $\max_{X \in \mathbb{C}^{n \times n}, X = X^*} \operatorname{Tr}(CX) \text{ subject to } \operatorname{diag}(X) = \mathbf{1}, X \succeq \mathbf{0}.$ $\operatorname{rank}(X) = \mathbf{1} \quad (SDP)$

• Verify with dual certificate: find λ such that $q(\lambda) = f(X)$.

• Verify with dual certificate: find λ such that $q(\lambda) = f(X)$.

 Widely studied: compressed sensing, matrix completion, robust PCA, Stochastic block model, etc.

• Phase sychronization: why difficult?

- Phase sychronization: why difficult?
- Dual certificate:

$$S = \operatorname{Re}(\operatorname{ddiag}(C\widehat{x}\widehat{x}^*)) - C.$$

・ロト・4回ト・4回ト・4回ト

11/23

Goal: to show $S \succeq 0$.

- Phase sychronization: why difficult?
- Dual certificate:

$$S = \operatorname{Re}(\operatorname{ddiag}(C\widehat{x}\widehat{x}^*)) - C.$$

Goal: to show $S \succeq 0$.

- Complicated statistical dependence!
- Previous analyses are sub-optimal, e.g., $\sigma = O(n^{1/4})$ in Bandeira et al. [2016]. Simulations suggest success for $\sigma = \tilde{O}(\sqrt{n})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

One of our main results:

Theorem

If $\sigma = O\left(\sqrt{\frac{n}{\log n}}\right)$, with high probability for large n, SDP admits a unique solution $\widehat{x}\widehat{x}^*$, where \widehat{x} is a global optimum of (P) (unique up to phase.)

◆ロト ◆課 と ◆語 と ◆語 と 語

12/23

'With high probability' is $1 - O(n^{-2})$.

Beyond SDP?

- Beyond SDP?
- Observe

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } |x_k| = 1 \quad \forall k \in [n].$$

- Beyond SDP?
- Similar to the eigenvector problem!

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } \frac{|x_k| = 1 \quad \forall k \in [n]}{\|x\| = 1}.$$

・ロト・4回ト・4回ト・4回ト

- Beyond SDP?
- Similar to the eigenvector problem!

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } \frac{|x_k| = 1 \quad \forall k \in [n]}{\|x\| = 1}$$

⊧ ≣া≣ ৩৭৫ 13/23

- Beyond SDP?
- Similar to the eigenvector problem!

$$\max_{x \in \mathbb{C}^n} x^* Cx \text{ subject to } \frac{|x_k| = 1 \quad \forall k \in [n]}{\|x\|} = 1$$

> ≣া≣ ৩৭৫ 13/23

• Generalized Power Method:

(1) Set x^0 to be a leading eigenvector of *C* with $||x^0||_2 = \sqrt{n}$.

(2) For
$$t = 0, 1, ...,$$
 update $(x^{t+1})_k = \frac{(Cx^t)_k}{|(Cx^t)_k|}$.

Generalized Power Method:
(1) Set x⁰ to be a leading eigenvector of *C* with ||x⁰||₂ = √n.
(2) For t = 0, 1, ..., update (x^{t+1})_k = (Cx^t)_k/|(Cx^t)_k|.

Theorem

If $\sigma = O\left(\sqrt{\frac{n}{\log n}}\right)$, with high probability for large n, GPM converges linearly to the global optimum of (P) (unique up to phase.)

• Fix (theoretically) the global phase such that $z^*\hat{x} = |z^*\hat{x}|$.

Estimation Errors of MLE

• Fix (theoretically) the global phase such that $z^*\hat{x} = |z^*\hat{x}|$.

Theorem

If $\sigma = O(\sqrt{n/\log n})$, then w.h.p. for large n,

$$\|\widehat{x} - z\|_2 = O(\sigma), \text{ and}$$
$$\|\widehat{x} - z\|_{\infty} = O(\sigma\sqrt{\log n/n}).$$

Estimation Errors of MLE

• Fix (theoretically) the global phase such that $z^*\hat{x} = |z^*\hat{x}|$.

Theorem

If $\sigma = O(\sqrt{n/\log n})$, then w.h.p. for large n,

$$\|\widehat{x} - z\|_2 = O(\sigma), \text{ and}$$
$$\|\widehat{x} - z\|_{\infty} = O(\sigma\sqrt{\log n/n}).$$

• The eigenvector \tilde{x} has the same estimation error rate.

• Low rank structure under our model:

$$C = zz^* + \sigma W.$$

Recall \tilde{x} is the top eigenvector of *C* with $\|\tilde{x}\|_2 = \sqrt{n}$.

• Low rank structure under our model:

$$C = zz^* + \sigma W.$$

Recall \tilde{x} is the top eigenvector of *C* with $\|\tilde{x}\|_2 = \sqrt{n}$.

• The ℓ_2 bound is easy: by Davis-Kahan, w.h.p.

$$\frac{1}{\sqrt{n}} \|\tilde{x} - z\| \le \frac{\sigma \|W\|_{\text{op}}}{\lambda_1(zz^*)} = O(\frac{\sigma}{\sqrt{n}})$$

• Low rank structure under our model:

$$C = zz^* + \sigma W.$$

Recall \tilde{x} is the top eigenvector of *C* with $\|\tilde{x}\|_2 = \sqrt{n}$.

• The ℓ_2 bound is easy: by Davis-Kahan, w.h.p.

$$\frac{1}{\sqrt{n}} \|\tilde{x} - z\| \leq \frac{\sigma \|W\|_{\text{op}}}{\lambda_1(zz^*)} = O(\frac{\sigma}{\sqrt{n}})$$

• The ℓ_{∞} bound is (a bit) hard:

$$|\tilde{x}_m-z_m|=\left|\frac{(C\tilde{x})_m}{\lambda_1(C)}-z_m\right|\leq \left|\frac{|z^*\tilde{x}|}{\lambda_1(C)}-1\right|+\frac{\sigma|(W\tilde{x})_m|}{\lambda_1(C)}.$$

• Low rank structure under our model:

$$C = zz^* + \sigma W.$$

Recall \tilde{x} is the top eigenvector of *C* with $\|\tilde{x}\|_2 = \sqrt{n}$.

• The ℓ_2 bound is easy: by Davis-Kahan, w.h.p.

$$\frac{1}{\sqrt{n}}\|\tilde{x}-z\| \leq \frac{\sigma \|W\|_{\mathrm{op}}}{\lambda_1(zz^*)} = O(\frac{\sigma}{\sqrt{n}})$$

• The ℓ_{∞} bound is (a bit) hard:

$$|\tilde{x}_m-z_m|=\left|\frac{(C\tilde{x})_m}{\lambda_1(C)}-z_m\right|\leq \left|\frac{|z^*\tilde{x}|}{\lambda_1(C)}-1\right|+\frac{\sigma|(W\tilde{x})_m|}{\lambda_1(C)}.$$

- The goal: $\|W\widetilde{x}\|_{\infty} = O(\sqrt{n\log n})$ w.h.p.
- Once this is proved, ℓ_{∞} perturbation bound $\sqrt{2}$, and ℓ_{∞} and ℓ_{∞} , the set of th

• The idea: introduce auxiliary problems to decouple dependence (leave-one-out).

- The idea: introduce auxiliary problems to decouple dependence (leave-one-out).
- For each $m \in [n]$, define $C^{(m)} := zz^* + \sigma W^{(m)}$, with

 $W_{k\ell}^{(m)} = W_{k\ell} \mathbf{1}_{\{k \neq m\}} \mathbf{1}_{\{\ell \neq m\}}, \quad \tilde{x}^{(m)} = \text{leading eigenvector of } C^{(m)}$

$$W^{(m)} = \begin{pmatrix} W_{11} & W_{12} & 0 & W_{14} \\ W_{21} & W_{21} & 0 & W_{24} \\ 0 & 0 & 0 & 0 \\ W_{41} & W_{42} & 0 & W_{44} \end{pmatrix}$$

- The idea: introduce auxiliary problems to decouple dependence (leave-one-out).
- For each $m \in [n]$, define $C^{(m)} := zz^* + \sigma W^{(m)}$, with

$$W_{k\ell}^{(m)} = W_{k\ell} \mathbf{1}_{\{k \neq m\}} \mathbf{1}_{\{\ell \neq m\}}, \quad \tilde{x}^{(m)} = \text{leading eigenvector of } C^{(m)}$$

$$W^{(m)} = \begin{pmatrix} W_{11} & W_{12} & 0 & W_{14} \\ W_{21} & W_{21} & 0 & W_{24} \\ 0 & 0 & 0 & 0 \\ W_{41} & W_{42} & 0 & W_{44} \end{pmatrix}$$

• Obs: $C^{(m)}$ is independent of *m*th row of *W*, and w.h.p. $|(W\tilde{x})_m| = |w_m^* \tilde{x}| \le |w_m^* \tilde{x}^{(m)}| + |w_m^* (\tilde{x} - \tilde{x}^{(m)})|$ $\le |w_m^* \tilde{x}^{(m)}| + ||w_m|| \cdot ||\tilde{x} - \tilde{x}^{(m)}||$ $\le O(\sqrt{n \log n}) + O(\sqrt{n}) \cdot ???.$ 17/23 • To bound $\|\tilde{x} - \tilde{x}^{(m)}\|$, use a precise version of Davis-Kahan:

$$\frac{1}{\sqrt{n}} \|\tilde{x} - \tilde{x}^{(m)}\| = O\left(\frac{\sigma \|(W - W^{(m)})\frac{\tilde{x}^{(m)}}{\sqrt{n}}\|}{n}\right) = O\left(\frac{\sqrt{\log n}}{n}\sigma\right) w.h.p$$

working! 🗸

• To bound $\|\tilde{x} - \tilde{x}^{(m)}\|$, use a precise version of Davis-Kahan:

$$\frac{1}{\sqrt{n}} \|\tilde{x} - \tilde{x}^{(m)}\| = O\left(\frac{\sigma \|(W - W^{(m)})\frac{\tilde{x}^{(m)}}{\sqrt{n}}\|}{n}\right) = O\left(\frac{\sqrt{\log n}}{n}\sigma\right) w.h.p$$

working! 🗸

দ ≣া≣ ৩৭৫ 18/23

• Introduce *n* auxiliary sequences to analyze the MLE.

- Introduce *n* auxiliary sequences to analyze the MLE.
- Let \mathcal{T} be our GPM operator: $(\mathcal{T}x)_k = \frac{(Cx)_k}{|(Cx)_k|}$. Similarly, $(\mathcal{T}^{(m)}x)_k := \frac{(C^{(m)}x)_k}{|(C^{(m)}x)_k|}$. Define *n* sequences:

$$C: \quad \widetilde{x} = x^{0} \xrightarrow{\mathcal{T}} x^{1} \xrightarrow{\mathcal{T}} x^{2} \xrightarrow{\mathcal{T}} \dots \xrightarrow{\mathcal{T}} x^{\infty} \xrightarrow{\mathcal{T}} GPM \text{ iterates}$$

$$C^{(1)}: \quad \widetilde{x}^{(1)} = x^{0,1} \xrightarrow{\mathcal{T}^{(1)}} x^{1,1} \xrightarrow{\mathcal{T}^{(1)}} x^{2,1} \xrightarrow{\mathcal{T}^{(1)}} \dots \xrightarrow{\mathcal{T}^{(1)}} x^{\infty,1} \xrightarrow{\mathcal{T}^{(1)}} x^{\infty,1} \xrightarrow{\mathcal{T}^{(m)}} x^{\infty,m} \xrightarrow{\mathcal{T}^{(m)}} x^{2,m} \xrightarrow{\mathcal{T}^{(m)}} \dots \xrightarrow{\mathcal{T}^{(m)}} x^{\infty,m} \xrightarrow{\mathcal{T}^{(m)}}$$

- Key: Contraction via induction.
- $\Delta^{t+1,m} \leq \rho \Delta^{t,m} + \text{small discrepancy error } (\rho < 1).$
- Maintained throughout all iterates \Rightarrow guarantee for \hat{x} .

A new method of analyzing nonconvex problems.

A new method of analyzing nonconvex problems.

Key idea: introducing auxiliary sequences to decouple + perturbation analysis

・ロト・4回ト・4回ト・4回ト・4回ト

A new method of analyzing nonconvex problems.

Key idea: introducing auxiliary sequences to decouple + perturbation analysis

Can also analyze matrix completion, phase retrieval, blinded deconvolution, etc. [Chen et al., 2017].

Thank you!

<ロ > < 部 > < き > < き > 見 = 9 Q () 22/23

- A.S. Bandeira, N. Boumal, and A. Singer. Tightness of the maximum likelihood semidefinite relaxation for angular synchronization. *Mathematical Programming*, pages 1–23, 2016. doi: 10.1007/s10107-016-1059-6.
- Yuxin Chen, Jianqing Fan, Cong Ma, and Kaizheng Wang. Spectral method and regularized MLE are both optimal for top-K ranking. arXiv preprint arXiv:1707.09971, 2017.

・ロト・4回ト・4回ト・4回ト・4回ト

23/23

S. Zhang and Y. Huang. Complex quadratic optimization and semidefinite programming. *SIAM Journal on Optimization*, 16(3):871–890, 2006.