(Near-)optimal Results for Phase Synchronization

Yiqiao Zhong

Princeton University
with Nicolas Boumal (PACM)

SIAM AN18, Portland, July 10, 2018
(9) Background
(2) Main Results
(3) Proof Ideas
(4) Concluding Remarks

- Unknown parameters (angles): $\theta_{1}, \theta_{2}, \ldots, \theta_{n} \in[0,2 \pi)$.
- Unknown parameters (angles): $\theta_{1}, \theta_{2}, \ldots, \theta_{n} \in[0,2 \pi)$.
- Goal: estimate these parameters from pairwise measurements (offsets):

$$
y_{\ell k}=\text { noisy version of } \theta_{\ell}-\theta_{k} \bmod 2 \pi,
$$

where $1 \leq \ell<k \leq n$.

- Time synchronization.

- Time synchronization.

- More generally, a group instead of $[0,2 \pi)$. Applications: Cryo-EM (Electron cryomicroscopy), calibration of cameras, robotics.
- Re-formulate our problem:
$C_{\ell k}=$ noisy version of $\bar{z}_{\ell} z_{k}$,
where $z_{k}=\exp \left(i \theta_{k}\right)$.
- Re-formulate our problem:
$C_{\ell k}=$ noisy version of $\bar{z}_{\ell} z_{k}$,
where $z_{k}=\exp \left(i \theta_{k}\right)$.
- The model:

$$
C_{\ell k}=\bar{z}_{\ell} z_{k}+\sigma W_{\ell k}, \quad \forall \ell>k
$$

where $W_{\ell k} \sim N_{\mathbb{C}}(0,1)$. Assume all pairs of measurements.

- Re-formulate our problem:
$C_{\ell k}=$ noisy version of $\bar{z}_{\ell} z_{k}$,
where $z_{k}=\exp \left(i \theta_{k}\right)$.
- The model:

$$
C_{\ell k}=\bar{z}_{\ell} z_{k}+\sigma W_{\ell k}, \quad \forall \ell>k
$$

where $W_{\ell k} \sim N_{\mathbb{C}}(0,1)$. Assume all pairs of measurements.

- The matrix form:

$$
C=z z^{*}+\sigma W
$$

where $z \in \mathbb{C}^{n}$ with $\left|z_{k}\right|=1 ; W_{k k}=0, W_{k \ell}=\bar{W}_{\ell k}$.

- Deriving the MLE: minimize $\left\|C-x x^{*}\right\|_{F}^{2}$ over $x \in \mathbb{C}^{n}$ with $\left|x_{k}\right|=1$.
- Deriving the MLE: minimize $\left\|C-x x^{*}\right\|_{F}^{2}$ over $x \in \mathbb{C}^{n}$ with $\left|x_{k}\right|=1$.
- Equivalently,

$$
\begin{equation*}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }\left|x_{k}\right|=1 \quad \forall k \in[n] . \tag{P}
\end{equation*}
$$

- Deriving the MLE: minimize $\left\|C-x x^{*}\right\|_{F}^{2}$ over $x \in \mathbb{C}^{n}$ with $\left|x_{k}\right|=1$.
- Equivalently,

$$
\begin{equation*}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }\left|x_{k}\right|=1 \quad \forall k \in[n] . \tag{P}
\end{equation*}
$$

- Denote the solution by \widehat{x}. Up to a global phase.
- Deriving the MLE: minimize $\left\|C-x x^{*}\right\|_{F}^{2}$ over $x \in \mathbb{C}^{n}$ with $\left|x_{k}\right|=1$.
- Equivalently,

$$
\begin{equation*}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }\left|x_{k}\right|=1 \quad \forall k \in[n] . \tag{P}
\end{equation*}
$$

- Denote the solution by \widehat{x}. Up to a global phase.
- Information limit: $\sigma=\sqrt{n}$.
- Deriving the MLE: minimize $\left\|C-x x^{*}\right\|_{F}^{2}$ over $x \in \mathbb{C}^{n}$ with $\left|x_{k}\right|=1$.
- Equivalently,

$$
\begin{equation*}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }\left|x_{k}\right|=1 \quad \forall k \in[n] . \tag{P}
\end{equation*}
$$

- Denote the solution by \widehat{x}. Up to a global phase.
- Information limit: $\sigma=\sqrt{n}$.
- Our goal: under $\sigma=\tilde{O}(\sqrt{n})$,
- Develop efficient algorithms that find \widehat{x};
- Derive statistical guarantees.
- Recall the MLE \widehat{x} is a solution to:

$$
\begin{equation*}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }\left|x_{k}\right|=1 \quad \forall k \in[n] . \tag{P}
\end{equation*}
$$

- Recall the MLE \widehat{x} is a solution to:

$$
\begin{equation*}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }\left|x_{k}\right|=1 \quad \forall k \in[n] . \tag{P}
\end{equation*}
$$

- Trouble...nonconvexity!

- Recall the MLE \widehat{x} is a solution to:

$$
\begin{equation*}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }\left|x_{k}\right|=1 \quad \forall k \in[n] . \tag{P}
\end{equation*}
$$

- Trouble...nonconvexity!

- Indeed, NP-hard in general. Zhang and Huang [2006]
- However...may be tractable under our model.
- However...may be tractable under our model.
- Lifting the problem to higher dimensional space:

$$
X=x x^{*} \succeq 0
$$

- Quadratic \Rightarrow Linear:

$$
x^{*} C x \Rightarrow \operatorname{Tr}(C X), \quad\left|x_{k}\right|=1 \Rightarrow x_{k k}=1
$$

- However...may be tractable under our model.
- Lifting the problem to higher dimensional space:

$$
X=x x^{*} \succeq 0
$$

- Quadratic \Rightarrow Linear:

$$
x^{*} C x \Rightarrow \operatorname{Tr}(C X), \quad\left|x_{k}\right|=1 \Rightarrow x_{k k}=1
$$

- Equivalently,

$$
\begin{array}{r}
\max _{X \in \mathbb{C}^{n \times n}, X=X^{*}} \operatorname{Tr}(C X) \text { subject to } \operatorname{diag}(X)=\mathbf{1}, X \succeq 0, \\
\operatorname{rank}(X)=1 .
\end{array}
$$

- However...may be tractable under our model.
- Lifting the problem to higher dimensional space:

$$
X=x x^{*}
$$

- Quadratic \Rightarrow Linear:

$$
x^{*} C x \Rightarrow \operatorname{Tr}(C X), \quad\left|x_{k}\right|=1 \Rightarrow x_{k k}=1
$$

- semidefinite relaxation:

$$
\begin{align*}
\max _{X \in \mathbb{C}^{n \times n}, X=X^{*}} \operatorname{Tr}(C X) \text { subject to } \operatorname{diag}(X) & =\mathbf{1}, X \succeq 0 . \\
\operatorname{rank}(X) & =1 \tag{SDP}
\end{align*}
$$

- Verify with dual certificate: find λ such that $q(\lambda)=f(X)$.
- Verify with dual certificate: find λ such that $q(\lambda)=f(X)$.

- Widely studied: compressed sensing, matrix completion, robust PCA, Stochastic block model, etc.
- Phase sychronization: why difficult?
- Phase sychronization: why difficult?
- Dual certificate:

$$
S=\operatorname{Re}\left(\operatorname{ddiag}\left(C \widehat{x} \widehat{x}^{*}\right)\right)-C .
$$

Goal: to show $S \succeq 0$.

- Phase sychronization: why difficult?
- Dual certificate:

$$
S=\operatorname{Re}\left(\operatorname{ddiag}\left(C \widehat{x} \widehat{x}^{*}\right)\right)-C .
$$

Goal: to show $S \succeq 0$.

- Complicated statistical dependence!
- Previous analyses are sub-optimal, e.g., $\sigma=O\left(n^{1 / 4}\right)$ in Bandeira et al. [2016]. Simulations suggest success for $\sigma=\tilde{O}(\sqrt{n})$.

One of our main results:

Theorem
 If $\sigma=O\left(\sqrt{\frac{n}{\log n}}\right)$, with high probability for large n, SDP admits a unique solution $\widehat{x} \widehat{x}^{*}$, where \widehat{x} is a global optimum of (P) (unique up to phase.)

'With high probability' is $1-O\left(n^{-2}\right)$.

Faster approach: Generalized Power Method

- Beyond SDP?
- Beyond SDP?
- Observe
$\max _{x \in \mathbb{C}^{n}} x^{*} C x$ subject to $\left|x_{k}\right|=1 \quad \forall k \in[n]$.
- Beyond SDP?
- Similar to the eigenvector problem!

$$
\begin{gathered}
\max _{x \in \mathbb{C}^{n}} x^{*} C x \text { subject to }+x_{k} \mid=1 \quad \forall k \in[n] . \\
\|x\|=1
\end{gathered}
$$

- Beyond SDP?
- Similar to the eigenvector problem!
$\max _{x \in \mathbb{C}^{n}} x^{*} C x$ subject to $\left|x_{k}\right|=1 \quad \forall k \subset[n]$.

$$
\|x\|=1
$$

- Beyond SDP?
- Similar to the eigenvector problem!
$\max _{x \in \mathbb{C}^{n}} x^{*} C x$ subject to $\left|x_{k}\right|=1 \quad \forall k \in[m]$.

$$
\|x\|=1
$$

- Generalized Power Method:
(1) Set x^{0} to be a leading eigenvector of C with $\left\|x^{0}\right\|_{2}=\sqrt{n}$.
(2) For $t=0,1, \ldots$, update $\left(x^{t+1}\right)_{k}=\frac{\left(C x^{t}\right)_{k}}{\left|\left(C x^{t}\right)_{k}\right|}$.
- Generalized Power Method:
(1) Set x^{0} to be a leading eigenvector of C with $\left\|x^{0}\right\|_{2}=\sqrt{n}$.
(2) For $t=0,1, \ldots$, update $\left(x^{t+1}\right)_{k}=\frac{\left(C x^{t}\right)_{k}}{\left|\left(C x^{t}\right)_{k}\right|}$.

Theorem

If $\sigma=O\left(\sqrt{\frac{n}{\log n}}\right)$, with high probability for large n, GPM converges linearly to the global optimum of (P) (unique up to phase.)

Estimation Errors of MLE

- Fix (theoretically) the global phase such that $z^{*} \widehat{x}=\left|z^{*} \widehat{x}\right|$.
- Fix (theoretically) the global phase such that $z^{*} \widehat{x}=\left|z^{*} \widehat{x}\right|$.

Theorem

If $\sigma=O(\sqrt{n / \log n})$, then w.h.p. for large n,

$$
\begin{aligned}
\|\widehat{x}-z\|_{2} & =O(\sigma), \text { and } \\
\|\widehat{x}-z\|_{\infty} & =O(\sigma \sqrt{\log n / n})
\end{aligned}
$$

- Fix (theoretically) the global phase such that $z^{*} \widehat{x}=\left|z^{*} \widehat{x}\right|$.

$$
\begin{aligned}
& \text { Theorem } \\
& \text { If } \sigma=O(\sqrt{n / \log n}) \text {, then w.h.p. for large } n \text {, } \\
& \qquad \begin{array}{r}
\|\widehat{x}-z\|_{2}=O(\sigma) \text {, and } \\
\|\widehat{x}-z\|_{\infty}=O(\sigma \sqrt{\log n / n})
\end{array}
\end{aligned}
$$

- The eigenvector \tilde{x} has the same estimation error rate.
- Low rank structure under our model:

$$
C=z z^{*}+\sigma W .
$$

Recall \tilde{x} is the top eigenvector of C with $\|\tilde{x}\|_{2}=\sqrt{n}$.

- Low rank structure under our model:

$$
C=z z^{*}+\sigma W
$$

Recall \tilde{x} is the top eigenvector of C with $\|\tilde{x}\|_{2}=\sqrt{n}$.

- The ℓ_{2} bound is easy: by Davis-Kahan, w.h.p.

$$
\frac{1}{\sqrt{n}}\|\tilde{x}-z\| \leq \frac{\sigma\|W\|_{\mathrm{op}}}{\lambda_{1}\left(z z^{*}\right)}=O\left(\frac{\sigma}{\sqrt{n}}\right)
$$

- Low rank structure under our model:

$$
C=z z^{*}+\sigma W
$$

Recall \tilde{x} is the top eigenvector of C with $\|\tilde{x}\|_{2}=\sqrt{n}$.

- The ℓ_{2} bound is easy: by Davis-Kahan, w.h.p.

$$
\frac{1}{\sqrt{n}}\|\tilde{x}-z\| \leq \frac{\sigma\|W\|_{\mathrm{op}}}{\lambda_{1}\left(z z^{*}\right)}=O\left(\frac{\sigma}{\sqrt{n}}\right)
$$

- The ℓ_{∞} bound is (a bit) hard:

$$
\left|\tilde{x}_{m}-z_{m}\right|=\left|\frac{(C \tilde{x})_{m}}{\lambda_{1}(C)}-z_{m}\right| \leq\left|\frac{\left|z^{*} \tilde{x}\right|}{\lambda_{1}(C)}-1\right|+\frac{\sigma\left|(W \tilde{x})_{m}\right|}{\lambda_{1}(C)} .
$$

- Low rank structure under our model:

$$
C=z z^{*}+\sigma W
$$

Recall \tilde{x} is the top eigenvector of C with $\|\tilde{x}\|_{2}=\sqrt{n}$.

- The ℓ_{2} bound is easy: by Davis-Kahan, w.h.p.

$$
\frac{1}{\sqrt{n}}\|\tilde{x}-z\| \leq \frac{\sigma\|W\|_{\mathrm{op}}}{\lambda_{1}\left(z z^{*}\right)}=O\left(\frac{\sigma}{\sqrt{n}}\right)
$$

- The ℓ_{∞} bound is (a bit) hard:

$$
\left|\tilde{x}_{m}-z_{m}\right|=\left|\frac{(C \tilde{x})_{m}}{\lambda_{1}(C)}-z_{m}\right| \leq\left|\frac{\left|z^{*} \tilde{x}\right|}{\lambda_{1}(C)}-1\right|+\frac{\sigma\left|(W \tilde{x})_{m}\right|}{\lambda_{1}(C)} .
$$

- The goal: $\|W \tilde{x}\|_{\infty}=O(\sqrt{n \log n})$ w.h.p.
- Once this is proved, ℓ_{∞} perturbation bound \checkmark_{a}
- The idea: introduce auxiliary problems to decouple dependence (leave-one-out).
- The idea: introduce auxiliary problems to decouple dependence (leave-one-out).
- For each $m \in[n]$, define $C^{(m)}:=z z^{*}+\sigma W^{(m)}$, with

$$
W_{k \ell}^{(m)}=W_{k \ell} \mathbf{1}_{\{k \neq m\}} \mathbf{1}_{\{\ell \neq m\}}, \quad \tilde{x}^{(m)}=\text { leading eigenvector of } C^{(m)}
$$

$$
W^{(m)}=\left(\begin{array}{cccc}
W_{11} & W_{12} & 0 & W_{14} \\
W_{21} & W_{21} & 0 & W_{24} \\
0 & 0 & 0 & 0 \\
W_{41} & W_{42} & 0 & W_{44}
\end{array}\right)
$$

- The idea: introduce auxiliary problems to decouple dependence (leave-one-out).
- For each $m \in[n]$, define $C^{(m)}:=z z^{*}+\sigma W^{(m)}$, with

$$
W_{k \ell}^{(m)}=W_{k \ell} \mathbf{1}_{\{k \neq m\}} \mathbf{1}_{\{\ell \neq m\}}, \quad \tilde{x}^{(m)}=\text { leading eigenvector of } C^{(m)}
$$

$$
W^{(m)}=\left(\begin{array}{cccc}
W_{11} & W_{12} & 0 & W_{14} \\
W_{21} & W_{21} & 0 & W_{24} \\
0 & 0 & 0 & 0 \\
W_{41} & W_{42} & 0 & W_{44}
\end{array}\right)
$$

- Obs: $C^{(m)}$ is independent of m th row of W, and w.h.p.

$$
\begin{aligned}
\left|(W \tilde{x})_{m}\right|=\left|w_{m}^{*} \tilde{x}\right| & \leq\left|w_{m}^{*} \tilde{x}^{(m)}\right|+\left|w_{m}^{*}\left(\tilde{x}-\tilde{x}^{(m)}\right)\right| \\
& \leq\left|w_{m}^{*} \tilde{x}^{(m)}\right|+\left\|w_{m}\right\| \cdot\left\|\tilde{x}-\tilde{x}^{(m)}\right\| \\
& \leq O(\sqrt{n \log n})+O(\sqrt{n}) \cdot ? ? ? .
\end{aligned}
$$

- To bound $\left\|\tilde{x}-\tilde{x}^{(m)}\right\|$, use a precise version of Davis-Kahan:

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}\left\|\tilde{x}-\tilde{x}^{(m)}\right\|=O\left(\frac{\sigma\left\|\left(W-W^{(m)}\right) \frac{\tilde{x}^{(m)}}{\sqrt{n}}\right\|}{n}\right)=O\left(\frac{\sqrt{\log n}}{n} \sigma\right) \text { w.h.p. } \\
& \text { working! } \checkmark
\end{aligned}
$$

- To bound $\left\|\tilde{x}-\tilde{x}^{(m)}\right\|$, use a precise version of Davis-Kahan:

$$
\frac{1}{\sqrt{n}}\left\|\tilde{x}-\tilde{x}^{(m)}\right\|=O\left(\frac{\sigma\left\|\left(W-W^{(m)}\right) \frac{\tilde{x}^{(m)}}{\sqrt{n}}\right\|}{n}\right)=O\left(\frac{\sqrt{\log n}}{n} \sigma\right) \text { w.h.p. }
$$

working! \checkmark

Tracking n Auxiliary Sequences
 19/23

- Introduce n auxiliary sequences to analyze the MLE.
- Introduce n auxiliary sequences to analyze the MLE.
- Let \mathcal{T} be our GPM operator: $(\mathcal{T} x)_{k}=\frac{(C x)_{k}}{\left|(C x)_{k}\right|}$. Similarly, $\left(\mathcal{T}^{(m)} x\right)_{k}:=\frac{\left(C^{(m)} x\right)_{k}}{\left|\left(C^{(m)} x\right)_{k}\right|}$. Define n sequences:

- Key: Contraction via induction.
- $\Delta^{t+1, m} \leq \rho \Delta^{t, m}+$ small discrepancy error $(\rho<1)$.
- Maintained throughout all iterates \Rightarrow guarantee for \widehat{x}.

A new method of analyzing nonconvex problems.

A new method of analyzing nonconvex problems.

Key idea: introducing auxiliary sequences to decouple + perturbation analysis

A new method of analyzing nonconvex problems.

Key idea: introducing auxiliary sequences to decouple + perturbation analysis

Can also analyze matrix completion, phase retrieval, blinded deconvolution, etc. [Chen et al., 2017].

Thank you!

A.S. Bandeira, N. Boumal, and A. Singer. Tightness of the maximum likelihood semidefinite relaxation for angular synchronization. Mathematical Programming, pages 1-23, 2016. doi: 10.1007/s10107-016-1059-6.

Yuxin Chen, Jianqing Fan, Cong Ma, and Kaizheng Wang. Spectral method and regularized MLE are both optimal for top-K ranking. arXiv preprint arXiv:1707.09971, 2017.
S. Zhang and Y. Huang. Complex quadratic optimization and semidefinite programming. SIAM Journal on Optimization, 16(3):871-890, 2006.

