
Generalization theory of
Deep Learning

Yiqiao Zhong, Department of Statistics, UW Madison
CS 762, Oct 20, 2022

Some notations
• Training data 𝑆 = (𝒙!, 𝑦!)!"#$, input 𝑥! is 𝑑-dim vector, 𝑦! label (or real value)

• Neural network (NN) 𝑓𝜽: 𝑅& → 𝑅'(or 𝑅), e.g., feed-forward NN

where 𝜎 is activation (e.g., ReLU); 𝜽 contains all trainable parameters

• Loss function 𝐿(𝑦, 𝑓𝜽 𝒙), Empirical Risk Minimization (ERM)

• Train loss 𝑅$(1𝜽), train error: ratio of misclassification on 𝑆

• On test data 𝑇 = (𝒙!, 𝑦!)!"#$! , evaluate 1𝜽, test error (sometimes generalization error):
ratio of misclassification on 𝑇. Often 𝑛(= ∞ in analysis
• Disclaimer: very incomplete references; check [Bartlett, Montanari, Rakhlin, Deep

learning: a statistical view, 2021]

The generalization puzzle

Bias-variance tradeoff

• Generally holds for many statistical models
• Classical solution to high-complexity models: regularize!

Source: ESL

Why and how regularizing high complexity model
• Consider linear ridge regression. Denote 𝑛 × 𝑑 data matrix 𝑿. Solve

• Using SVD : 𝑛)#/+𝑿 = 𝑼𝜮𝑽𝑻

• Test error generally 𝑂(𝑑/𝑛) if 𝑑 ≪ 𝑛
• Worse still, if 𝑑 is close to n, huge variance in 1𝜽 without regularization. (MP law)
• Solution: need large 𝝀 if 𝑑 is large.

Successful stories of regularization are everywhere:
• If signal is a sparse vector, use 𝐿#regularization ∥ 𝜽 ∥#, called LASSO
• If signal is a low-rank matrix, use nuclear-norm regularization ∥ 𝜽 ∥∗

But wait…double descent ?!

Source: Belkin et al, 2019

New questions for ML/statistics:
1. When and why this happens?
2. When second descent better? Do we need regularization?
3. Lessons for architecture & algorithm design?

Need understanding beyond interpolation

Source: Zhang et al, 2019

Search for implicit bias

Implicit bias
• Space of interpolating solutions (train error/loss is zero) may be large,

but (stochastic) gradient descent (GD) converges to one with good
generalization performance
• Proof-of-concept in overparametrized linear regression:

Implicit bias for classifying separable data
• Classification setting: for linearly separable data we can achieve zero

train error using a linear classifier.

• Gradient descent favors “small-norm” solution (at least in certain settings)
• Search for implicit bias: multiple linear deep network [Moroshko et al.

20], linear convolution network [GLSS18], one-hidden-layer ReLU network
[NTS15], etc.

• Q: What is the generalization error of these solutions?

The path to realism (or not?)

• In lazy training regime [OCB19], models are linear in parameters
[HMRT18, MM19, MRSY19, MZ20]
• Test error can be calculated with idealized assumptions on data,

rigorously justifying double descent

Random
features modelsLinear models Neural tangent

models
Deep neural

networks

Lazy training regime

Neural tangent model
• Key insight: when network width is infinite (or very large), the GD or SGD

dynamics is given by (or approximated) by linearized local models---known
as neural tangent kernel (NTK) models [JGH18, DZPS19, AZLS19, COB19]
• A simple example: one-hidden-layer NN:

• Initialize from 𝜽! = (𝒂!,𝑾!), do Taylor expansion:

Why NTK makes sense?

• Q: under NTK, what is the generalization error?

Insights from statistics

Overparametrized linear models

• Consider the one-hidden-layer NTK model. We have NT features:

• A useful simplification: NT features have complicated dependence,
why not assume that we have !𝒙!~𝑁(𝟎, 𝜮), prediction function is
!𝒙"*𝜽. By abuse of notations, just write 𝒙! .

• Key insight:

Decomposing features

• Regression setting. Data 𝐗 = [𝐗#$, 𝐗%$] of size 𝑛×𝑑, where 𝑑 > 𝑛

• A seemingly bold assumption: 𝐗%$𝐗"%$ ≈ 𝛾 𝐈&
• Heuristic justification: features are divided into “important” ones (≤
𝑘) and “not important” ones (> 𝑘); the latter is similar to pure noise

• Equivalent to ridge regression!

Implicit regularization

• Parameter 𝛾 controls the amount of regularization
• Turning heuristics into rigorous arguments. For general (𝜆')'#(,

define effective rank:

• Concentration results can show:

• Find a sweet spot for 𝑘 so that: 𝒙#$ captures almost all information
while 𝒙%$ is similar to noise. Called effective dimension.

A look at the theorems

• Upper bounds tight up to constants [Tsigler, Bartlett, 2020]
• Bias and variance vanish under suitable decay of eigenvalues [TB20],

empirically checked [WHS22]

Is linear model naïve?

• Consider the NT features:

• The spirit is the same. Stacking NT features into 𝑛 × 𝑁𝑑 matrix Φ .
Assume isotropic data 𝒙!~ 𝑁(𝟎, 𝑰().

• Self-induced regularization: nonlinearity of activation helps!

A general generalization result for 2-layer NTK

• [Montanari, Zhong, 2020] Suppose 𝑑$ ≪ 𝑛 ≪ 𝑑$)*, isotropic input
data. general target function 𝑓∗ ∈ 𝐿, 𝑆(-* . As long as network width
𝑁 satisfies 𝑁𝑑 ≫ 𝑛 (overparametrization), then with high probability,

• Generalization via low-degree component, interpolation via high-
degree component
• Regularization increased due to high-degree part of activation

Beyond Lazy Training

Limitation of Lazy training

• Success of deep learning depends on learning data representation.
More complicated than random features models or variants.
• Want NNs to move moderately away from initialization.
• Random features models restricted, having trouble learning single

neuron function [MBM17].
• Nevertheless, NTK may be advantageous for small-sample datasets

[ADLS+19]

Mean-field perspective
• Viewing parameters as a probability distribution [MMN18, CB18]

• Under a nonstandard initialization scaling 𝑣𝑎𝑟 𝑤$ ~ 𝑂 *
&!

, continuous-
time SGD ≈ Gradient flow on probability measure, which is determined by
a PDE.
• Advantage: capable of learning more functions
• Disadvantages: weak theory. Requires very large width (likely exponential

in 𝑑), requires very large sample size (in general, exponential in 𝑑); the
latter can be improved to polynomial dependence by adding noise
[WLLM20]

Feature learning with GD

• Suppose the target function 𝑓∗ 𝒙 = 𝑔(𝑼𝒙) where 𝑼 is of size 𝑑 × 𝑟
with 𝑑 ≫ 𝑟. Assume 𝑔 is of polynomial of degree 𝑝.
• NTK cannot learn the unknown subspace 𝑼, thus requiring a much

larger sample size 𝑂(𝑑.)
• Assuming non-degeneracy condition of Hessian of 𝑓∗, one-step GD on

the squared loss using one-hidden-layer NN reveals information
about 𝑼, which results in improved sample complexity 𝑂 𝑑, ; see
[DLS22]

Other approaches
• Classical tools in learning theory such as VC dimension insufficient

because dimension is too large [BMM99]
• Bounding Rademacher using weight matrix norms [BFT17]
• Finding other good complexity measures by taking into account

initialization [NLBLS18], algorithms, etc.

Emerging phenomena, and new hope?

Self-supervised learning

• Representation using supervised learning 𝑓 𝒙; 𝜽 . Q: label intensive?
How to transfer?
• With no (or very few) label information, NNs can learn good

embedding, e.g., SimCLR [CKNH20]
• Clear cluster structure & meaningful learned features

• Self-supervised learning or unsupervised learning may be a bridge
to understanding generalization

Source: Wang, Isola, 2020

Visualizing learned features

Source: Wen and Li, 2021

Neural collapse
• ℎ = ℎ/ 𝑥 is last-layer activations, where ℎ/: 𝑅(→ 𝑅., 𝐾 classes
• Classifier: 𝑊ℎ/ 𝑥 + 𝑏
• decomposing covariance: between-class + within-class:
• Σ" = Σ0 + Σ1

Source: Papyan, Han,
Donoho, 2020

Clear phenomenon, clean math relations

Intermediate layers for generalization theory?

• How about intermediate layers? Do we have neural collapse?
• Empirical work by [GGB20] demonstrates existence of effective depth,

which is a threshold 𝐿 ---below layer 𝐿 within-class variances decrease
but no collapse, above layer 𝐿 there is neural collapse
• Can we decompose overparametrized deep NNs into “representation

learning component” and “interpolation component”? If so, helpful
for generalization & transfer learning

Thank you!

Contact: yiqiao.zhong@wisc.edu
Office: MSC 1122

mailto:yiqiao.zhong@wisc.edu

