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Some notations

* Training data S = (x;,y;)i=¢, input x; is d-dim vector, y; label (or real value)
* Neural network (NN) fp: R? - R¥(or R), e.g., feed-forward NN

fo(x) = Wro(---ac(Wyo(Wiz +by) + b2) + by)
where o is activation (e.g., ReLU); 8 contains all trainable parameters

* Loss function L(y, fg(x)), Empirical Risk Minimization (ERM)

. . 1 T
0 € argming - Z L(yi, fo(x;)) =: R,(0)

1=1
* Train loss R,, (@), train error: ratio of misclassification on S

!/ —~
* OntestdataT = (x;,V;)i=1, evaluate 0, test error (sometimes generalization error):

ratio of misclassification on T. Often n’ = oo in analysis

* Disclaimer: very incomplete references; check [Bartlett, Montanari, Rakhlin, Deep
learning: a statistical view, 2021]



The generalization puzzle
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FIGURE 2.11. Test and training error as a function of model complexity.

* Generally holds for many statistical models
* Classical solution to high-complexity models: regularize!

Source: ESL



Why and how regularizing high complexity model

e Consider linear ridge regression. Denote n X d data matrix X. Solve
1 2 2 m
min EH?! — X605 + Al[€]|3

« UsingSVD:n~12x = yzvT

) T 1l
0=(;x X+A1d) ~XTy =

ﬂl

* Test error generally O(d/n) ifd K n

« Worse still, if d is close to n, huge variance in @ without regularization. (MP law)
» Solution: need large A if d is large.

Successful stories of regularization are everywhere:

* |f signal is a sparse vector, use L;regularization || 8 ||, called LASSO
 |f signal is a low-rank matrix, use nuclear-norm regularization || 0 ||.




under-parameterized over-parameterized
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New questions for ML/statistics:

1. When and why this happens?

2. When second descent better? Do we need regularization?

3. Lessons for architecture & algorithm design? Source: Belkin et al, 2019



Need understanding beyond interpolation
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Source: Zhang et al, 2019



Search for implicit bias



Implicit bias

 Space of interpolating solutions (train error/loss is zero) may be large,
but (stochastic) gradient descent (GD) converges to one with good
generalization performance

* Proof-of-concept in overparametrized linear regression:
Proposition (HMRT, 2018). Initialize 8% = 0, and consider gradient descent on L, (8) = n~!|ly — X3|?,
B*) = g*-1) _p9vsL,.(8), k=1,2,3,...,
where 1 > 0 is sufficiently small. Then limg_, ., 3 (k) — E, where E is the minimum-norm interpolator:

3 = argmin{||,3||2 : @ minimizes L, (ﬁ)} = (XTX)+XT?J-

Note that (XTX)+ denotes the Moore-Penrose pseudoinverse. In particular, if XX is invertible, then
B =XT"(XXT") 1y is an interpolator.



Implicit bias for classifying separable data

e Classification setting: for linearly separable data we can achieve zero
train error using a linear classifier.

Theorem (Soudry, et al. 2018). Consider the logistic loss and any linearly separable data. From any
initializer B8 € R4, the gradient descent iterate B*+1) = Bk — TIVL.,,,(ﬂ(k)) satisfies

B*) =B logk + A
where residual |A%®) |, = O(loglog k) and S is the max-margin solution
B = argminﬁ||,8||§ st. B'x; > 1, foralli=1,2,...,n.

e Gradient descent favors “small-norm” solution (at least in certain settings)

e Search for implicit bias: multiple linear deep network [Moroshko et al.
20], linear convolution network [GLSS18], one-hidden-layer ReLU network
[NTS15], etc.

* Q: What is the generalization error of these solutions?



The path to realism (or not?)
. andom eural tangen eep neura

Lazy training regime

* In lazy training regime [OCB19], models are linear in parameters
[HMRT18, MM19, MRSY19, MZ20]

* Test error can be calculated with idealized assumptions on data,
rigorously justifying double descent



Neural tangent model

e Key insight: when network width is infinite (or very large), the GD or SGD
dynamics is given by (or approximated) by linearized local models---known
as neural tangent kernel (NTK) models [JGH18, DZPS19, AZLS19, COB19]

* A simple example: one-hidden-layer NN:
N

1
f(x;0) = N Z aro(w, )
k=1
* Initialize from 8, = (ay, W), do Taylor expansion:

1
—f(:c' ap+ea, Wy +eW)

.
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Why NTK makes sense?

Consider residuals at time t: let 7, =y — f(x;80;) € R,
then running gradient flow (GF) gives

d

S re="Kir, where [K¢|ij = (Vo f(2i;0:), Vo f(x;;6:))

If K; =~ Kj for all ¢ (guaranteed when width is large), then

. d 2
(2) o H'rt”2 = —2r;th ry S —2)\min(K0)||rt||g
—> linear convergence rate
(41) T RT where 7; comes from GF
~ 1 — 2
on the loss L,,(0) = — i — fin(x;; 0
n (6) - > (yi — fin(xi;0))

1=1

* Q: under NTK, what is the generalization error?



Insights from statistics



Overparametrized linear models

* Consider the one-hidden-layer NTK model. We have NT features:
Vauf(®;00) = [a10”(x wo )z’ ,... ,ano' (& won)z'] € RN

* A useful simplification: NT features have complicated dependence,
why not assume that we have X;~N (0, X), prediction function is

x'0. By abuse of notations, just write x; .

Assumption. Suppose z = > 12z is 1-subgaussian.
WLOG, assume ¥ = diag(A1,...,Aq) where A\y > -+ > Aq.

* Key insight:

N g
—

prediction part interpolation part

(x,0) = (mSk,a§k> T <m>ka§>k)
N o’



Decomposing features
* Regression setting. Data X = [X., X5 | of size nXd, whered > n
XX =X Xy + Xk X1,

* A seemingly bold assumption: X- X o, = v 1,

e Heuristic justification: features are divided into “important” ones (<
k) and “not important” ones (> k); the latter is similar to pure noise

b\ék = argmingeRk Hy — XSkOHZ +7||0||§

* Equivalent to ridge regression!



Implicit regularization

* Parameter y controls the amount of regularization

* Turning heuristics into rigorous arguments. For general (4;) j<q,
define effective rank:
Zz’>k Ai

(%) = Ak+1

 Concentration results can show:

re(X) > bn = )\j(X>kXIk) € [v/c, cy] where v = Zj>k Aj

* Find a sweet spot for k so that: x., captures almost all information
while x5, is similar to noise. Called effective dimension.



A look at the theorems

Theorem 4.4. Fiz 6 < 1/2. Under Assumption 4.2, suppose for some k the condition number of X i X I,
is at most k with probability at least 1 — 6. Then

s (1) (£ 5E2)

with probability at least 1 — 26.

Theorem 4.5. Under the assumptions of Theorem /.4, for n 2 log(1/d), with probability at least 1 — 26,

2
2 Zz‘>k)‘i
(=) +e knzM]. (48)

e Upper bounds tight up to constants [Tsigler, Bartlett, 2020]

* Bias and variance vanish under suitable decay of eigenvalues [TB20],
empirically checked [WHS22]

—_—2
BIAS < k* !



Is linear model naive?

e Consider the NT features:

o' ({z, wi))T = o< ({2, wi)) T + 0L ((T, W)@
NT feature effective fitting noise

* The spirit is the same. Stacking NT features into n X (Nd) matrix @ .
Assume isotropic data x;~ N(0,1;).

PP’ ~ ng@gk + @ P, (cross term negligible)

~® DL, + |0 ]2, - 1, high-degree term concentrates
<kF <k >kIL

 Self-induced regularization: nonlinearity of activation helps!



A general generalization result for 2-layer NTK

* [Montanari, Zhong, 2020] Suppose d* « n « d**1, isotropic input
data. general target function f, € L, (Sd‘l). As long as network width
N satisfies Nd > n (overparametrization), then with high probability,

Rnt(f;A) = Rkrr(f; ) + 0( Nid)

- | ' 12 n
_RPRR(fa/\‘+||‘7>k”L2)+O( Nd)

* Generalization via low-degree component, interpolation via high-
degree component

* Regularization increased due to high-degree part of activation



Beyond Lazy Training



Limitation of Lazy training

* Success of deep learning depends on learning data representation.
More complicated than random features models or variants.

 Want NNs to move moderately away from initialization.

 Random features models restricted, having trouble learning single
neuron function [MBM17].

* Nevertheless, NTK may be advantageous for small-sample datasets
[ADLS+19]



Mean-field perspective

* VViewing parameters as a probability distribution [MMN18, CB18]

z:0) = [ ac(w'z) sy (da, dw), where py is empirical measure on R4H!
p p

* Under a nonstandard initialization scaling var(w;) ~ O (ﬁ) , continuous-
time SGD = Gradient flow on probability measure, which is determined by

a PDE.
* Advantage: capable of learning more functions

» Disadvantages: weak theory. Requires very large width (likely exponential
in d), requires very large sample size (in general, exponential in d); the
latter can be improved to polynomial dependence by adding noise
[WLLM20]



Feature learning with GD

* Suppose the target function f,(x) = g(Ux) where U isof sized X r
with d > r. Assume g is of polynomial of degree p.

* NTK cannot learn the unknown subspace U, thus requiring a much
larger sample size O (dP)

* Assuming non-degeneracy condition of Hessian of f,, one-step GD on
the squared loss using one-hidden-layer NN reveals information

about U, which results in improved sample complexity 0(d?); see
[DLS22]



Other approaches

* Classical tools in learning theory such as VC dimension insufficient
because dimension is too large [BMM99]

* Bounding Rademacher using weight matrix norms [BFT17]

* Finding other good complexity measures by taking into account
initialization [NLBLS18], algorithms, etc.

Theorem 2. Forany h > 2,y > 0, € (0,1) and U° € R**9, with probability 1 — § over the choice of the training
set S = {x;}™, C RY, for any function f(x) = V[Ux], such that V € R°*" and U € R"*%, the generalization
error is bounded as follows:

Lo(f) < L, (f) + O (WHVIIF (Ju - Uj'i; Xl + [U°X]| ) . @)

cl|l|lV U-Uu° U’ < T'ri1 Xq 3
gm(f)m(‘[' I (| ”Tw—n 1) /& =0y il . :2)



Emerging phenomena, and new hope?



Self-supervised learning

* Representation using supervised learning f(x; 8). Q: label intensive?
How to transfer?

* With no (or very few) label information, NNs can learn good
embedding, e.g., SImMCLR [CKNH20]

* Clear cluster structure & meaningful learned features

e Self-supervised learning or unsupervised learning may be a bridge
to understanding generalization
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(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.
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(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

Source: Wang, Isola, 2020



Visualizing learned features

Supervised Features Contrastive Features
(of adversarial trained Wide-ResNet) (of adversarial-contrast trained Wide-ResNet)

o Gx oA e @

Source: Wen and Li, 2021



Neural collapse

* h = hg(x) is last-layer activations, where hg: RY — RP, K classes

* Classifier: Whg(x) + b
* decomposing covariance: between-class + within-class:

Source: Papyan, Han,
Donoho, 2020



Clear phenomenon, clean math relations

(NC1) Variability collapse: Xw — 0

(NC2) Convergence to Simplex ETF:

e — pcll, — llpe — pall,| =0 Ve

C 1 /
~C7~c’ ? 5cc’ - \Y s L

(NC3) Convergence to self-duality:

H Wir IIMIIF

F

(NC4): Simplification to NCC:

arg max (W, h) + b — argmin |[h — pr||2

c/



Intermediate layers for generalization theory?

* How about intermediate layers? Do we have neural collapse?

* Empirical work by [GGB20] demonstrates existence of effective depth,
which is a threshold L ---below layer L within-class variances decrease

but no collapse, above layer L there is neural collapse

e Can we decompose overparametrized deep NNs into “representation
learning component” and “interpolation component”? If so, helpful

for generalization & transfer learning



Thank you!

Contact: yigiao.zhong@wisc.edu
Office: MSC 1122
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