Generalization theory of Deep Learning

Yiqiao Zhong, Department of Statistics, UW Madison CS 762, Oct 20, 2022

Some notations

- Training data $S = (x_i, y_i)_{i=1}^n$, input x_i is d-dim vector, y_i label (or real value)
- Neural network (NN) f_{θ} : $R^d \to R^K$ (or R), e.g., feed-forward NN

$$f_{\theta}(\mathbf{x}) = \mathbf{W}_L \sigma(\cdots \sigma(\mathbf{W}_2 \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_L)$$

where σ is activation (e.g., ReLU); θ contains all trainable parameters

• Loss function $L(y, f_{\theta}(x))$, Empirical Risk Minimization (ERM)

$$\widehat{\boldsymbol{\theta}} \in \operatorname{argmin}_{\boldsymbol{\theta}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)) =: R_n(\boldsymbol{\theta})$$

- Train loss $R_n(\widehat{\boldsymbol{\theta}})$, train error: ratio of misclassification on S
- On test data $T = (x_i, y_i)_{i=1}^{n'}$, evaluate $\widehat{\theta}$, **test error** (sometimes generalization error): ratio of misclassification on T. Often $n' = \infty$ in analysis
- Disclaimer: very incomplete references; check [Bartlett, Montanari, Rakhlin, Deep learning: a statistical view, 2021]

The generalization puzzle

Bias-variance tradeoff

FIGURE 2.11. Test and training error as a function of model complexity.

- Generally holds for many statistical models
- Classical solution to high-complexity models: regularize!

Source: ESL

Why and how regularizing high complexity model

• Consider linear ridge regression. Denote $n \times d$ data matrix X. Solve

$$\min_{\boldsymbol{\theta}} \frac{1}{n} \|\boldsymbol{y} - \mathbf{X}\boldsymbol{\theta}\|_{2}^{2} + \lambda \|\boldsymbol{\theta}\|_{2}^{2}$$

• Using SVD : $n^{-1/2}X = U\Sigma V^T$

$$\widehat{m{ heta}} = \left(rac{1}{n} \mathbf{X}^ op \mathbf{X} + \lambda \mathbf{I}_d
ight)^{-1} rac{1}{n} \mathbf{X}^ op m{y} = rac{1}{\sqrt{n}} \sum_{j=1}^d m{u}_j rac{\sigma_j}{\sigma_j^2 + \lambda} m{v}_j^ op m{y}$$

- Test error generally O(d/n) if $d \ll n$
- Worse still, if d is close to n, huge variance in $\widehat{\boldsymbol{\theta}}$ without regularization. (MP law)
- Solution: need large λ if d is large.

Successful stories of regularization are everywhere:

- If signal is a sparse vector, use L_1 regularization $\| \boldsymbol{\theta} \|_1$, called LASSO
- If signal is a low-rank matrix, use nuclear-norm regularization $\| \boldsymbol{\theta} \|_*$

But wait...double descent ?!

New questions for ML/statistics:

- 1. When and why this happens?
- 2. When second descent better? Do we need regularization?
- 3. Lessons for architecture & algorithm design?

Source: Belkin et al, 2019

Need understanding beyond interpolation

Source: Zhang et al, 2019

Search for implicit bias

Implicit bias

- Space of interpolating solutions (train error/loss is zero) may be large, but (stochastic) gradient descent (GD) converges to one with good generalization performance
- Proof-of-concept in overparametrized linear regression:

Proposition (HMRT, 2018). Initialize $\boldsymbol{\beta}^{(0)} = \mathbf{0}$, and consider gradient descent on $L_n(\boldsymbol{\beta}) = n^{-1} \|\boldsymbol{y} - \mathbf{X}\boldsymbol{\beta}\|^2$,

$$\boldsymbol{\beta}^{(k)} = \boldsymbol{\beta}^{(k-1)} - \eta \nabla_{\boldsymbol{\beta}} L_n(\boldsymbol{\beta}), \qquad k = 1, 2, 3, \dots,$$

where $\eta > 0$ is sufficiently small. Then $\lim_{k \to \infty} \boldsymbol{\beta}^{(k)} = \widehat{\boldsymbol{\beta}}$, where $\widehat{\boldsymbol{\beta}}$ is the minimum-norm interpolator:

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin} \Big\{ \|\boldsymbol{\beta}\|_2 : \boldsymbol{\beta} \text{ minimizes } L_n(\boldsymbol{\beta}) \Big\} = \big(\mathbf{X}^{\top} \mathbf{X} \big)^{+} \mathbf{X}^{\top} \boldsymbol{y}.$$

Note that $(\mathbf{X}^{\top}\mathbf{X})^{+}$ denotes the Moore-Penrose pseudoinverse. In particular, if $\mathbf{X}\mathbf{X}^{\top}$ is invertible, then $\widehat{\beta} = \mathbf{X}^{\top}(\mathbf{X}\mathbf{X}^{\top})^{-1}\boldsymbol{y}$ is an interpolator.

Implicit bias for classifying separable data

• Classification setting: for *linearly separable data* we can achieve zero train error using a linear classifier.

Theorem (Soudry, et al. 2018). Consider the logistic loss and any linearly separable data. From any initializer $\boldsymbol{\beta}^{(0)} \in \mathbb{R}^d$, the gradient descent iterate $\boldsymbol{\beta}^{(k+1)} = \boldsymbol{\beta}^{(k)} - \eta \nabla L_n(\boldsymbol{\beta}^{(k)})$ satisfies

$$\boldsymbol{\beta}^{(k)} = \widehat{\boldsymbol{\beta}} \log k + \boldsymbol{\Delta}^{(k)}$$

where residual $\|\mathbf{\Delta}^{(k)}\|_2 = O(\log \log k)$ and $\widehat{\boldsymbol{\beta}}$ is the max-margin solution

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin}_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|_2^2 \quad \text{s.t. } \boldsymbol{\beta}^{\top} \boldsymbol{x}_i \geq 1, \text{ for all } i = 1, 2, \dots, n.$$

- Gradient descent favors "small-norm" solution (at least in certain settings)
- Search for implicit bias: multiple linear deep network [Moroshko et al. 20], linear convolution network [GLSS18], one-hidden-layer ReLU network [NTS15], etc.
- Q: What is the generalization error of these solutions?

The path to realism (or not?)

- In lazy training regime [OCB19], models are linear in parameters [HMRT18, MM19, MRSY19, MZ20]
- Test error can be calculated with idealized assumptions on data, rigorously justifying double descent

Neural tangent model

- Key insight: when network width is infinite (or very large), the GD or SGD dynamics is given by (or approximated) by linearized local models---known as neural tangent kernel (NTK) models [JGH18, DZPS19, AZLS19, COB19]
- A simple example: one-hidden-layer NN:

$$f(\boldsymbol{x}; \boldsymbol{\theta}) = \frac{1}{N} \sum_{k=1}^{N} a_k \sigma(\boldsymbol{w}_k^{\top} \boldsymbol{x})$$

• Initialize from $\boldsymbol{\theta}_0 = (\boldsymbol{a}_0, \boldsymbol{W}_0)$, do **Taylor expansion**:

$$\frac{1}{\varepsilon}f(\boldsymbol{x};\boldsymbol{a}_0+\varepsilon\boldsymbol{a},\mathbf{W}_0+\varepsilon\mathbf{W})$$

$$\approx \underbrace{\frac{1}{\varepsilon}f(\boldsymbol{x};\boldsymbol{a}_0,\mathbf{W}_0)}_{\text{initialization}} + \underbrace{\sum_{k=1}^N a_k\sigma(\langle\boldsymbol{w}_{0,k},\boldsymbol{x}\rangle)}_{\text{random features model}} + \underbrace{\sum_{k=1}^N a_{0,k}\langle\boldsymbol{w}_k,\boldsymbol{x}\rangle\sigma'(\langle\boldsymbol{w}_{0,k},\boldsymbol{x}\rangle)}_{\text{neural tangent model}}$$

Why NTK makes sense?

Consider residuals at time t: let $\mathbf{r}_t = \mathbf{y} - f(\mathbf{x}; \boldsymbol{\theta}_t) \in \mathbb{R}^n$, then running gradient flow (GF) gives

$$rac{d}{dt} \, m{r}_t = - \mathbf{K}_t \, m{r}_t, \qquad ext{where } [\mathbf{K}_t]_{ij} = \langle
abla_{ heta} f(m{x}_i; m{ heta}_t),
abla_{ heta} f(m{x}_j; m{ heta}_t)
angle$$

If $\mathbf{K}_t \approx \mathbf{K}_0$ for all t (guaranteed when width is large), then

(i)
$$\frac{d}{dt} \| \boldsymbol{r}_t \|_2^2 = -2 \boldsymbol{r}_t^{\top} \mathbf{K}_t \, \boldsymbol{r}_t \lesssim -2 \lambda_{\min}(\mathbf{K}_0) \| \boldsymbol{r}_t \|_2^2$$

$$\implies \text{linear convergence rate}$$

(ii)
$$\boldsymbol{r}_t \approx \widetilde{\boldsymbol{r}}_t$$
 where $\widetilde{\boldsymbol{r}}_t$ comes from GF

on the loss $\widetilde{L}_n(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^n \left(y_i - f_{\text{lin}}(\boldsymbol{x}_i; \boldsymbol{\theta}) \right)^2$

Q: under NTK, what is the generalization error?

Insights from statistics

Overparametrized linear models

• Consider the one-hidden-layer NTK model. We have NT features:

$$\nabla_{\boldsymbol{w}} f(\boldsymbol{x}; \boldsymbol{\theta}_0) = [a_1 \sigma'(\boldsymbol{x}^\top \boldsymbol{w}_{0,1}) \boldsymbol{x}^\top, \dots, a_N \sigma'(\boldsymbol{x}^\top \boldsymbol{w}_{0,N}) \boldsymbol{x}^\top] \in \mathbb{R}^{Nd}$$

• A useful simplification: NT features have complicated dependence, why not assume that we have $\widetilde{x}_i \sim N(\mathbf{0}, \Sigma)$, prediction function is $\widetilde{x}^T \widehat{\theta}$. By abuse of notations, just write x_i .

Assumption. Suppose
$$z = \Sigma^{-1/2}x$$
 is 1-subgaussian. WLOG, assume $\Sigma = \text{diag}(\lambda_1, \dots, \lambda_d)$ where $\lambda_1 \geq \dots \geq \lambda_d$.

• Key insight:

$$\langle \boldsymbol{x}, \widehat{\boldsymbol{\theta}} \rangle = \underbrace{\langle \boldsymbol{x}_{\leq k}, \widehat{\boldsymbol{\theta}}_{\leq k} \rangle}_{\text{prediction part}} + \underbrace{\langle \boldsymbol{x}_{> k}, \widehat{\boldsymbol{\theta}}_{> k} \rangle}_{\text{interpolation part}}$$

Decomposing features

• Regression setting. Data $\mathbf{X} = [\mathbf{X}_{\leq k}, \mathbf{X}_{>k}]$ of size $n \times d$, where d > n

$$\mathbf{X}\mathbf{X}^{\top} = \mathbf{X}_{\leq k}\mathbf{X}_{\leq k}^{\top} + \mathbf{X}_{>k}\mathbf{X}_{>k}^{\top}$$

- A seemingly bold assumption: $\mathbf{X}_{>k}\mathbf{X}^{T}_{>k} \approx \gamma \mathbf{I}_{n}$
- Heuristic justification: features are divided into "important" ones ($\leq k$) and "not important" ones (> k); the latter is similar to pure noise

$$\widehat{\boldsymbol{\theta}}_{\leq k} = \operatorname{argmin}_{\boldsymbol{\theta} \in \mathbb{R}^k} \| \boldsymbol{y} - \mathbf{X}_{\leq k} \boldsymbol{\theta} \|_2^2 + \gamma \| \boldsymbol{\theta} \|_2^2$$

Equivalent to ridge regression!

Implicit regularization

- Parameter γ controls the amount of regularization
- Turning heuristics into rigorous arguments. For general $(\lambda_j)_{j \leq d}$, define *effective rank*:

$$r_k(\mathbf{\Sigma}) = \frac{\sum_{i>k} \lambda_i}{\lambda_{k+1}}.$$

Concentration results can show:

$$r_k(\mathbf{\Sigma}) \geq bn \Longrightarrow \lambda_j(\mathbf{X}_{>k}\mathbf{X}_{>k}^\top) \in [\gamma/c, c\gamma] \text{ where } \gamma = \sum_{j>k} \lambda_j$$

• Find a sweet spot for k so that: $x_{\leq k}$ captures almost all information while $x_{\geq k}$ is similar to noise. Called *effective dimension*.

A look at the theorems

Theorem 4.4. Fix $\delta < 1/2$. Under Assumption 4.2, suppose for some k the condition number of $\mathbf{X}_{>k}\mathbf{X}_{>k}^{\mathsf{T}}$ is at most κ with probability at least $1 - \delta$. Then

$$\widehat{\text{VAR}} \lesssim \sigma_{\xi}^2 \kappa^2 \log \left(\frac{1}{\delta}\right) \left(\frac{k}{n} + \frac{n \sum_{i>k} \lambda_i^2}{(\sum_{i>k} \lambda_i)^2}\right)$$
(44)

with probability at least $1-2\delta$.

Theorem 4.5. Under the assumptions of Theorem 4.4, for $n \geq \log(1/\delta)$, with probability at least $1-2\delta$,

$$\widehat{\text{BIAS}}^2 \lesssim \kappa^4 \left[\left\| \boldsymbol{\theta}_{\leq k}^* \right\|_{\boldsymbol{\Sigma}_{\leq k}^{-1}}^2 \left(\frac{\sum_{i > k} \lambda_i}{n} \right)^2 + \left\| \boldsymbol{\theta}_{> k}^* \right\|_{\boldsymbol{\Sigma}_{> k}}^2 \right]. \tag{48}$$

- Upper bounds tight up to constants [Tsigler, Bartlett, 2020]
- Bias and variance vanish under suitable decay of eigenvalues [TB20], empirically checked [WHS22]

Is linear model naïve?

Consider the NT features:

$$\underbrace{\sigma'(\langle \boldsymbol{x}, \boldsymbol{w}_k \rangle) \boldsymbol{x}}_{\text{NT feature}} = \underbrace{\sigma'_{\leq \ell}(\langle \boldsymbol{x}, \boldsymbol{w}_k \rangle) \boldsymbol{x}}_{\text{effective fitting}} + \underbrace{\sigma'_{> \ell}(\langle \boldsymbol{x}, \boldsymbol{w}_k \rangle) \boldsymbol{x}}_{\text{noise}}$$

• The spirit is the same. Stacking NT features into $n \times (Nd)$ matrix Φ . Assume isotropic data $x_i \sim N(\mathbf{0}, I_d)$.

$$\begin{split} \mathbf{\Phi} \mathbf{\Phi}^{\top} &\approx \mathbf{\Phi}_{\leq k} \mathbf{\Phi}_{\leq k}^{\top} + \mathbf{\Phi}_{>k} \mathbf{\Phi}_{>k}^{\top} \quad \text{(cross term negligible)} \\ &\approx \mathbf{\Phi}_{\leq k} \mathbf{\Phi}_{\leq k}^{\top} + \|\sigma_{>k}'\|_{L^{2}}^{2} \cdot \mathbf{I}_{n} \quad \text{(high-degree term concentrates)} \end{split}$$

• Self-induced regularization: nonlinearity of activation helps!

A general generalization result for 2-layer NTK

• [Montanari, Zhong, 2020] Suppose $d^k \ll n \ll d^{k+1}$, isotropic input data. general target function $f_* \in L_2(S^{d-1})$. As long as network width N satisfies $Nd \gg n$ (overparametrization), then with high probability,

$$R_{\text{NT}}(f;\lambda) = R_{\text{KRR}}(f;\lambda) + O\left(\sqrt{\frac{n}{Nd}}\right)$$
$$= R_{\text{PRR}}(f;\lambda + \|\sigma'_{>k}\|_{L^{2}}^{2}) + O\left(\sqrt{\frac{n}{Nd}}\right)$$

- Generalization via low-degree component, interpolation via highdegree component
- Regularization increased due to high-degree part of activation

Beyond Lazy Training

Limitation of Lazy training

- Success of deep learning depends on *learning data representation*. More complicated than random features models or variants.
- Want NNs to move moderately away from initialization.
- Random features models restricted, having trouble learning single neuron function [MBM17].
- Nevertheless, NTK may be advantageous for small-sample datasets [ADLS+19]

Mean-field perspective

• Viewing parameters as a *probability distribution* [MMN18, CB18]

$$f(\boldsymbol{x}; \boldsymbol{\theta}) = \int a\sigma(\boldsymbol{w}^{\top}\boldsymbol{x}) \ \widehat{\rho}_N(da, d\boldsymbol{w}), \qquad \text{where } \widehat{\rho}_N \ \text{is empirical measure on } \mathbb{R}^{d+1}$$

- Under a nonstandard initialization scaling $var(w_k) \sim O\left(\frac{1}{n^2}\right)$, continuoustime SGD \approx Gradient flow on probability measure, which is determined by a PDE.
- Advantage: capable of learning more functions
- Disadvantages: weak theory. Requires very large width (likely exponential in d), requires very large sample size (in general, exponential in d); the latter can be improved to polynomial dependence by adding noise [WLLM20]

Feature learning with GD

- Suppose the target function $f_*(x) = g(Ux)$ where U is of size $d \times r$ with $d \gg r$. Assume g is of polynomial of degree p.
- NTK cannot learn the unknown subspace \pmb{U} , thus requiring a much larger sample size $O(d^p)$
- Assuming non-degeneracy condition of Hessian of f_* , one-step GD on the squared loss using one-hidden-layer NN reveals information about U, which results in improved sample complexity $O(d^2)$; see [DLS22]

Other approaches

- Classical tools in learning theory such as VC dimension insufficient because dimension is too large [BMM99]
- Bounding Rademacher using weight matrix norms [BFT17]
- Finding other good complexity measures by taking into account initialization [NLBLS18], algorithms, etc.

Theorem 2. For any $h \ge 2$, $\gamma > 0$, $\delta \in (0,1)$ and $\mathbf{U}^0 \in \mathbb{R}^{h \times d}$, with probability $1 - \delta$ over the choice of the training set $\mathcal{S} = \{\mathbf{x}_i\}_{i=1}^m \subset \mathbb{R}^d$, for any function $f(\mathbf{x}) = \mathbf{V}[\mathbf{U}\mathbf{x}]_+$ such that $\mathbf{V} \in \mathbb{R}^{c \times h}$ and $\mathbf{U} \in \mathbb{R}^{h \times d}$, the generalization error is bounded as follows:

$$\begin{split} L_{0}(f) &\leq \hat{L}_{\gamma}(f) + \tilde{O}\left(\frac{\sqrt{c} \left\|\mathbf{V}\right\|_{F} \left(\left\|\mathbf{U} - \mathbf{U}^{0}\right\|_{F} \left\|\mathbf{X}\right\|_{F} + \left\|\mathbf{U}^{0}\mathbf{X}\right\|_{F}\right)}{\gamma m} + \sqrt{\frac{h}{m}}\right) \\ &\leq \hat{L}_{\gamma}(f) + \tilde{O}\left(\frac{\sqrt{c} \left\|\mathbf{V}\right\|_{F} \left(\left\|\mathbf{U} - \mathbf{U}^{0}\right\|_{F} + \left\|\mathbf{U}^{0}\right\|_{2}\right) \sqrt{\frac{1}{m} \sum_{i=1}^{m} \left\|\mathbf{x}_{i}\right\|_{2}^{2}}}{\gamma \sqrt{m}} + \sqrt{\frac{h}{m}}\right). \end{split}$$

Emerging phenomena, and new hope?

Self-supervised learning

- Representation using supervised learning $f(x; \theta)$. Q: label intensive? How to transfer?
- With no (or very few) label information, NNs can learn good embedding, e.g., SimCLR [CKNH20]
- Clear cluster structure & meaningful learned features

 Self-supervised learning or unsupervised learning may be a bridge to understanding generalization

(b) Supervised Predictive Learning. Linear classification validation accuracy: 57.19%.

(c) Unsupervised Contrastive Learning. Linear classification validation accuracy: 28.60%.

Source: Wang, Isola, 2020

Visualizing learned features

Supervised Features

(of adversarial trained Wide-ResNet)

Contrastive Features

(of adversarial-contrast trained Wide-ResNet)

Source: Wen and Li, 2021

Neural collapse

- $h = h_{\theta}(x)$ is last-layer activations, where $h_{\theta}: \mathbb{R}^d \to \mathbb{R}^p$, K classes
- Classifier: $Wh_{\theta}(x) + b$
- decomposing covariance: between-class + within-class:

•
$$\Sigma_T = \Sigma_B + \Sigma_W$$

Source: Papyan, Han, Donoho, 2020

Clear phenomenon, clean math relations

(NC1) Variability collapse: $\Sigma_W \to 0$

(NC2) Convergence to Simplex ETF:

$$\left| \left\| \boldsymbol{\mu}_{c} - \boldsymbol{\mu}_{G} \right\|_{2} - \left\| \boldsymbol{\mu}_{c'} - \boldsymbol{\mu}_{G} \right\|_{2} \right| \to 0 \quad \forall \ c, c'$$

$$\langle \tilde{\boldsymbol{\mu}}_{c}, \tilde{\boldsymbol{\mu}}_{c'} \rangle \to \frac{C}{C - 1} \delta_{c, c'} - \frac{1}{C - 1} \quad \forall \ c, c'.$$

(NC3) Convergence to self-duality:

$$\left\| \frac{oldsymbol{W}^{ op}}{\|oldsymbol{W}\|_F} - \frac{\dot{oldsymbol{M}}}{\|\dot{oldsymbol{M}}\|_F}
ight\|_F o 0$$

(NC4): Simplification to NCC:

$$rg \max_{c'} \left\langle oldsymbol{w}_{c'}, oldsymbol{h}
ight
angle + b_{c'}
ightarrow rg \min_{c'} \|oldsymbol{h} - oldsymbol{\mu}_{c'}\|_2$$

Intermediate layers for generalization theory?

- How about intermediate layers? Do we have neural collapse?
- Empirical work by [GGB20] demonstrates existence of effective depth, which is a threshold L ---below layer L within-class variances decrease but no collapse, above layer L there is neural collapse
- Can we decompose overparametrized deep NNs into "representation learning component" and "interpolation component"? If so, helpful for generalization & transfer learning

Thank you!

Contact: yiqiao.zhong@wisc.edu

Office: MSC 1122