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Abstract 
We introduce the problem of labeling a particle’s mass spectrum 
with the substances it contains, and develop several formal 
representations of the problem, taking into account practical 
complications such as unknown compounds and noise. This task 
is currently a bottle-neck in analyzing data from a new 
generation of instruments for real-time environmental 
monitoring. 
 

1. Introduction 
Mass spectrometry is widely used for the identification and 

quantification of elements, chemicals and biological materials. 
Historically, the specificity of mass spectrometry has been aided 
by upstream separation to remove mass spectral interference 
between different species.  However, in the past decade, a wide 
range of real-time mass spectrometry instruments have been 
employed, and the nature of these instruments often precludes 
separation and clean-up steps. The mass spectrum produced for a 
particle in real-time by one of these instruments, e.g., the Aerosol 
Time-of-Flight Mass Spectrometer (ATOFMS) [12,9,14,16], is 
therefore comprised of overlaid mass spectra from several 
substances, and the overlap between these spectra makes it 
difficult to identify the underlying substances. The commercially 
available ATOFMS instrument can obtain mass spectra for up to 
about 250 particles per minute, producing a time-series with 
unusual complexity. The data analysis challenges we describe are 
equally applicable to other real-time instruments that utilize mass 
spectrometry, such as the Aerosol Mass Spectrometer (AMS).   
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Figure 1: Mass spectrum labeling 
Mass spectrum labeling consists of “translating” the raw plot 

of intensity versus mass-to-charge (m/z) value to a list of 
chemical substances or ions and their rough quantities (the 
quantities omitted in Figure 1) present in the particle. Labeling 
spectra allows us to think of a stream of mass spectra as a time-
series of observations, one per collected particle, where each 
observation is a set of ion-quantity pairs. This is similar to a time-
series of transactions, each recording the items purchased by a 
customer in a single visit to a store [1,4,13]. This analogy makes 
a wide range of association rule [3] and sequential pattern 
algorithms [2] applicable to the analysis of labeled mass 

spectrometry data.  
The contributions of this paper include the following: In this 

and a companion paper [7], we introduce an important class of 
data mining problems involving mass spectra.  The focus in this 
paper is on the labeling of individual spectra (Section 2), which is 
the foundation of a class of group-oriented labeling tasks 
discussed in [7]. We introduce a rigorous framework for labeling 
and present a theoretical characterization of ambiguity, which 
arises due to overlapped spectra (Section 3). We account for 
practical complexities such as noise, errors, and the presence of 
unknown substances (Section 4), and present algorithms together 
with several optimizations and theoretical results (Section 5). We 
then present a detailed synthetic data generator that is based on 
real mass spectra, conforms to realistic problem scenarios, and 
allows us to produce labeled spectra while controlling several 
fundamental parameters such as ambiguity and noise (Section 6). 
Finally, we introduce a metric for measuring the quality of 
labeling, and evaluate our labeling algorithms, showing that 
although slower than some machine learning approaches, they 
achieve uniformly superior accuracy without the need for 
training datasets (Section 7). In many real settings, it is 
unrealistic to expect labeled training sets (e.g., when deploying 
an instrument in a new location, or when the ambient conditions 
change significantly).  We also apply our algorithms to a 
collection of real spectra and compare our results with hand-
labeling by domain scientists; they are effective enough 
(achieving 93% accuracy in detecting true labels) to be 
immediately useful.   

2. Problem formalization 
     A mass spectrum (or spectrum) is a vector 1[ , ]rb b b=

K
" , 

where ib R∈ is the signal intensity at mass-to-charge (m/z) 
value . For simplicity, we assume all spectra have the same 
‘range’ and ‘granularity’ over the m/z axis; i.e., they have the 
same dimension  and the  element of a spectrum always 
corresponds to the same m/z value i . Intuitively, each m/z ratio 
corresponds to a particular isotope of some chemical element. 
The signature of an ion is a vector

i

r thi

1 2[ , ]rs I I I=
K " , iI R∈ and 

1iI =∑ , representing the distribution of isotopes. 
 

is the 
proportion of the isotope with m/z value i . A signature library 
is a set of known signatures S s , in which

iI

1 2{ , }s s=
K K K" n jsK is the 

signature of ion j.  Additionally, there may be ions that appear on 
particles, and are therefore reflected in mass spectra, but that for 
which signatures are not included in the signature library.  

     The spectrum b
K

of a particle is a linear combination of the 
signatures of ions that it contains. j jj

b w=∑
K Ks , where jw  is the 

quantity of ion j in the particle. The task of mass spectrum 
labeling is to find all ions present in the particle as well as their 
quantities , given an input spectrum. Formally, a label for an 
ion with respect to a given spectrum is an  pair; 

iw
,ion quantity< >
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a label for the spectrum is the collection of labels for all ions in 
the signature library.  The task of labeling an input spectrum can 
be viewed as a search for a linear combination of ions that best 
approximates the spectrum, and the success that is achievable 
depends on the extent of unknown ions. In Sections 3 to 5, for 
simplicity we assume that the signature library is complete, i.e., 
there are no unknown ions.  We evaluate the impact of unknowns 
in Sections 6 and 7.  
3. When is labeling hard? 
     In this section, we formulate the labeling task as solving a set 
of linear equations, and then discuss the fundamental challenge 
involved: the interference between different combinations of 
signatures and the consequent ambiguity in labeling.  

3.1. Linear system abstraction 
We can represent the signature library  as a 

matrix
1 2{ , }nS s s s=
K K K"

1 2[ , ,...,  ]nA s s s=
K K K , where ksK , the  column of thk A , is the 

signature of ion k. A spectrum label is an n-dimensional 
vector x

K
whose thj  component [ ]x j

K
indicates the quantity of ion j 

in the particle. Labeling consists of solving the linear 
system Ax b=

K K
, . Noticing that0x ≥
K

Ax b=
KK ( )A cx cb⇒ =

K K
 for 

any constant , we can assume without loss of generality that c b
K

 
is normalized (i.e., ).  By definition of signatures, each 
column of A also sums to 1. It follows immediately from this fact 
and that . The exact quantities of all ions 
can be easily calculated by multiplying the quantity distribution 
vector 

[ ] 1
i
b i =∑
K

[ ] 1
i
b i =∑
K

[ ] 1
i
x i =∑ K

xK  by the overall quantity of the particle, which is simply 
the sum of signal intensities over all m/z values in the original 
spectrum before normalization. 

3.2. Uniqueness 
Definition 1: An input spectrum is said to have the unique 
labeling property with respect to signature library 

b
K

A  if there 
exists a unique solution 0xK  to the system Ax b=

KK , . 0x ≥K

In general, given library A  and input spectrum b
K

, neither 
existence nor uniqueness of solutions is guaranteed for the above 
equation. Our first result identifies a class of libraries for which 
every input spectrum is guaranteed to have a unique label. 
Theorem 1:  Consider signature library 1 2[ , ,...,  ]nA s s s=

K K K  and a 

spectrum  where b
K

1 2, ,...,  ns s sK K K  are linearly independent (i.e., 

there is no vector a =  such that K
1 2[ , ,..., ]na a a

1

n
i ii

a s
=∑ K and at 

least one ). Then, either  has the unique labeling property 
w.r.t. A, or the system of equations (1) has no solution.  □ 

0ia ≠ b
K

Even if a signature library does not satisfy the conditions of 
Theorem 1, there may still be input spectra b

K
for which the 

solution of (1) is unique, e.g. when 

,
0 1 1/ 2 1
1 0 1/ 2 0

A b
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

K ⎛ ⎞
⎜ ⎟
⎝ ⎠

 

there is a unique solution .  [0,1,0]Tx =
K

     Conversely, for a given spectrum, there will typically be 
infinitely many solutions when the signature library does not 
satisfy the conditions of Theorem 1. Theorem 2 shows an 
important case with infinite solutions. 

Theorem 2:  Consider the signature library 1 2[ , ,...,  ]nA s s s=
K K K and 

a spectrum b
K

 where 1 2, ,...,  ns s sK K K are not linearly independent. If 

there is a solution   1 2[ , ,..., ]nx x x x=
K

to Ax b=
KK , 0x ≥K  such that 

, then 1,2,..., 0i n imin x= > b
K

 has infinitely many labels.  □ 

3.3. Spectra with unique labeling 
We now present our main theoretical result, which is an 

elegant characterization of the complete set of spectra that have 
the unique labeling property with respect to a given signature 
library. We explain the concept through an example and state a 
theorem that describes this set. 
     Suppose the signature library has only four signatures   

1 2 3 4, , ,s s s sK K K K . Figure 2(a) shows the case in which 1 2 4, ,s s sK K K  are 
linearly dependent. All normalized spectra that can be 
represented as a conic combination (that is, a linear combination 
of the vectors  1 2 3 4, , ,s s s sK K K K  in which the coefficients are 
nonnegative) form the triangle 1 2 3 s s s∆  in this example. The 
ambiguity of the labeling comes from the linear dependency 
among 1 2 4, ,s s sK K K , since 4sK  is itself a conic combination of 1s

K  
and 2sK . However, any point lying on the line 1 3s s can be uniquely 
represented as a conic combination of 1s and 3s . The intuitive 
reason for this is clear: Any involvement of a positive fraction of 

2sK or 4sK  (or both) will lift the point out of the line 1 3s s .  Similarly, 
the points on the line 2 3s s can be uniquely represented as a conic 
combination of 2sK  and 4sK . The case in which 4sK combines all three 
vectors, 1 2 3, ,s s sK K K   is shown in Figure 2(b).  In this case, any point 
lying on the boundary of triangle 1 2 3s s s∆  can be uniquely 
represented as a conic combination of two signatures 
among 1 2 3, ,s s sK K K .   
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Figure 2: Vector space spanned by signatures 
n 2: Given a signature library 1 2{ , }nS s s s=

K K K" , the 
hull generated by S is defined as:  

1 1
{ | 1, 1, 0, ,1 }n n

i i i i ii i
w s n w w s S i n

= =
≥ = ≥ ∈ ≤∑ ∑ ≤K K

 
owing theorem is a necessary and sufficient condition for 
 spectrum to have a unique label with respect to a given 
e library.  The full proof is involved, and is included in 
ndix; we provide a proof outline below. 

 3:  The set of spectra with the unique labeling property 
rary S is the set of points in ch(S) that do not lie in the 

of the convex span of some affine dependent subset of S.  
 there is a polynomial time algorithm to test whether a 
ectrum has a unique spectrum w.r.t. a library S.□ 
dling ambiguity and errors 

ractice, signal intensities are not precisely calibrated, and 
ground noise causes measurement errors and introduces 
nty. We therefore introduce an error bound E and a 
 function D, and recast the labeling problem in terms of 
atical programming, as an “exhaustive” feasibility task: 



Seek all  such that ( , ) , 0.a D Aa b E a≤ ≥
KK K K

         (1) 

      Given a library A with n signatures and input spectrum b
K

, the 
search space for  problem (1) is an n-dimensional space. The 
solution space for input spectrum  is defined as follows: b

K

Definition 3 : Given a signature library A, an input spectrum b
K

 
and an error bound E with respect to distance function D, the 
solution space of spectrum  is b

K
{ }| ( , ) , 0 .a D Aa b E a

b
L = ≤

KK K KK ≥

i ii

 

     
It is worth noting that the choice of the distance function D 

may affect the complexity of the problem significantly. We use 
Manhattan Distance (also known as A norm) as our distance 
measurement. The Manhattan distance between two vectors is 
defined as |

1

1( , ) |α β α β= −∑A
JK JK

. With Manhattan distance, the 
solution set for (2) can be found using the following linear 
programming (LP) model: 

. .

,
0, 0, 1,2,3,...

ii

i i

min s s t

A b s A b s
s i

α α
α

− ≤ − ≥ −
≥ ≥ =

∑
K KJK JK

               (2) 

     We observe that if the distance function is convex, the 
solution space of an input spectrum 

K
is convex (see below). We 

will explore this property further in Section 5; for now, we note 
that Manhattan Distance is a convex distance function. 

b

Theorem 4:  If the distance function D has the form 
where is a convex function, then the solution 

space of the search described by Equation (1) is convex. □ 
( , ) ( ),D u v d u v= − d

4.1. Discretization 
     Even if an input spectrum has an infinite number of labels (for 
a given signature library) due to the ambiguity, in practice, we do 
not need to distinguish between solutions that are very similar. A 
natural approach to deal with a continuous space is to discretize it 
into grids, so that the number of possible solutions becomes 
finite.  
     Formally, a threshold vector  divides each 
dimension of the search space into d ranges, where  and 

0 1[ , ,..., ]dt t t t=
K

it 1it +  are 
the lower bound and upper bound of range i . Given a threshold 
vector, we introduce the notion of index vector to represent a 
continuous subspace. 
Definition 4: Given a threshold vector , an index 
vector I=[ ,  represents a 
continuous subspace,  

0 1[ , ,..., ]dt t t t=
K

1(l 1)h ..., ( , )],n nl h , ,i i i il h l h Z< ∈

{ | , [ ] [ ] [ ], [ ] }IS a i t l a i t h a i Ri i= ∀ < ≤ ∈
K KK K K          (4) 

     Since an index vector represents a unique subspace, we will 
refer to a subspace simply by its corresponding index vector 
when the context is clear. Using the index vector representation, 
we in turn define the notion of cell. 
Definition 5: A subspace [  is a cell if 1 1 2 2( , ),( , ),...,( , )]n nl h l h l h

, 1j jj l h∀ + =  . 

     The cell is the finest granularity of the discretization, which 
reflects the degree of detail which users care about. A threshold 
vector 

K
 divides the whole search space into  

cells, where n is the number of dimensions (which is equivalent 
to the total number of signatures).  Each cell also corresponds to 
a distinct n-dimensional integer vector 

0 1[ , ,..., ]dt t t t= nd

1 2[ , ,..., ],1 ,n i iy y y y y d y Z= ≤ ≤ ∈
K  

which defines a subspace Y corresponding to the index vector 
1 1 2 2[( , 1),( , 1),...,( , 1)]n ny y y y y y+ + + . 

4.2. Optimization model 
     We now redefine the task of spectrum labeling as follows: 
Find all the cells that intersect the solution space of the input 
spectrum. A label of spectrum b

K
 is then simply an integer vector 

x
K

 representing a cell that intersects the solution space of b
K

. All 
such integer vectors form the label set of spectrum b

K
. Formally, 

Definition 6:  A vector 1 2( , ,..., ),nx x x x=
K

[0... 1]ix d∈ − is a label 

of spectrum b
K

  if the subspace defined by the index vector 
1 1 2 2[( , 1),( , 1),...,( , 1)]n nX x x x x x x= + + +  intersects the solution 

space of spectrum b
K

. In the other word, x
K

 is the label if 
,  s.t ( , ) ,   [ ] [ 1]i iiD A b E t x t xα α α∃ ≤ < ≤ +
JK JK K K K K K

. 's label set 

is

b
K

{ |  is a label of }L x x b=
K K K

. 

To simplify the discussions in the following sections, we also 
introduce the notion of feasible space to describe a subspace that 
intersects the solution space of the input spectrum. A feasible 
space is a collection of one or more cells. If the feasible space is 
a cell, it is also called a label. Table 1 summarizes our notations 
and model. 

Figure Error! Bookmark not defined. illustrates the concepts 
discussed in this section. Suppose there are only two signatures in 
the signature library. The whole search space is a two 
dimensional space ABCD within which  forms the 
solution space of an input spectrum. It intersects the cells LFGM 
and MGHA, each of which corresponds to a label. Subspace 
ALFH intersects with the solution space, so it is a feasible space. 
MBEG is also a feasible space.   

1 2 3 4S S S S

 
Figure 3: Illustration of concepts 

Table 1: Operational definitions of labeling 

 

x
K

An n-dimensional integer vector, 0 ix d≤ <  

b
K Normalized input mass spectrum 

t
K Threshold vector for discretization 

d Number of ranges per dimension  
L Label set of input spectrum 
A Signature library with  signatures n
D Distance function 

Notations 

E Error bound 
L ←∅  

         
i

for each possible ,   s.t.
      D(A , )
     t[ ] [ ] [ 1],               

      if exists such , { }

x Seek a
b E

j a i t j j x
L L x

α

α

≤

< ≤ + =

=

K
JK K

K K K K
JK K

∪



 
5. Labeling Algorithms 

In Section 4, we showed that given n signatures and 
discretization granularity d, the search space contains  cells. A 
brute force approach that tests the feasibility of each cell is not 
practical, considering that there are hundreds of signatures. In 
this section, we propose two algorithms: DFS is a general 
algorithm which works for any distance function, and Crawling 
algorithm exploits convexity property of distance functions. 

nd

5.1. Feasibility test 
 Given a subspace S, we use the algorithm shown in Table 

Error! Bookmark not defined. to test the feasibility of the 
subspace; this module is the building block of the later 
algorithms. Notice that for each test; exactly one LP call is 
invoked. 

Table 2: Test the feasibility of a subspace 

5

w
p

Theorem 5: Let a spectrum b
K

 and a signature library A  with n 
signatures be given. If subspace S is feasible, then any 
subspace T , with  is also feasible.□ S T⊂

The DFS labeling algorithm explores a search tree in which 
each node is associated with a particular subspace, and the 
subtree rooted at that node corresponds to the subsets of that 
subspace. At each node, the algorithm first tests the feasibility of 
the subspace for that node.  If not feasible, that node and its 
subtree are pruned. Otherwise, we select a dimension j that has 
not been subdivided to the finest possible granularity in the 
subspace of that node, and divide the subspace further along 
dimension j.  Each smaller space created thus corresponds to a 
child of the current node. 

In Table 3, the pick_dimension method chooses a dimension 
(which is not already at the finest granularity possible) to split the 
current subspace and split_subspace divides the current subspace 
into smaller pieces along the chosen dimension. Details of these 
two methods are discussed in [10]. 

The correctness of DFS algorithm is proved in [10]. In [7] 
we show that the complexity of the DFS algorithm is O(knd) 
5.3. Crawling algorithm 

DFS is a general algorithm in which we can use any distance 
function D, even one that is non-convex. The Crawling algorithm 
requires the distance function to be convex and exploits the 
Input: b
K

 Input mass spectrum 
 E Error bound 
 t

K
 Threshold vector 

Output: TRUE if the subspace is feasible, FALSE 
otherwise 

Is_feasible(subspace S)      K
 
.2. Depth-First Search (DFS) algorithm 

We first state an important property of subspace feasibility 
hich guarantees the correctness of the DFS algorithm.  The 
roof is straightforward and is omitted. 

Table 3: DFS Algorithm 

 

1 1 2 2

  s.t.
      ( , )                                      (*)
      t[ ] [ ] [ ],  for 1,2,...,   
      [( , ),( , ),...,( , )]  is the index vector of subspace     
if (*) succee

j j

n n

Seek a
D Aa b E

l a j t h j n
l h l h l h S

≤

< ≤ =

connectivity property1 derived from the convexity of solution 
spaces, as described in Theorem 4. K K

K K K

ds, return TRUE, otherwise return FALSE

Connectivity Property: Given two labels l1 and ln, there exists a 
path of connecting labels ( l1 ,…, li-1 , li ,… ln ) in which li-1 , li are 
adjacent, i.e., differ only in one dimension by 1.  

The Crawling algorithm first finds a solution to the linear 
system ( , ) , [ ] 0D Aa b E a i≤ ≥

KK K  by invoking one LP call. The cell 
that contains solution is a label and is used as the start point to 
explore other connected cells in a breath-first fashion. If the cell 
discovered has not been visited before and is a label, its 
neighbors will be explored subsequently. Otherwise, it is 
discarded and no further exploration will be incurred by it. The 
algorithm stops when all labels and their neighbors are visited. 
The connectivity property guarantees that all labels are connected 
to the first label we found and can be discovered by “crawling” 
from that start point.   Due to lack of space, we omit details of the 
algorithm; see [10], which also contains a correctness proof and 
shows that the time and space complexity are O(kn).  

Let’s take Figure 3 in Section 4 again as an example. The 
input spectrum’s label set contains two labels which are the cells 
in shade. The crawling algorithm first finds a solution point. 
Suppose it falls in cell LFGM. It then starts from LFGM and 
explores its neighbors LBEF, FROG and MGHA. Among the 
three, only cell MGHA is a label and will incur further 
exploration. It has only two adjacent cells. One is already visited 
and the other is not a label. Thereby the algorithm terminates and 
outputs LFGM and MGHA as the input spectrum’s label set. 

Theorem 6 Given an input spectrum , a signature database b
K

1 2[ , ,..., ]nA S S S=
JK JK JK

and a threshold vector , 

suppose the number of labels for b  is k, the Crawling algorithm 
will find the complete set of the labels for input spectrum. □ 

1 2 1[ , ,..., ]dt t t t +=
K

K

Input: b
K

 Input mass spectrum 

 E Error bound 
 t

K
 Threshold vector 

Output: Label set ( )L b
K

  
Depth_First_Search(subspace S) 
      L ←∅
     if  not Is_feasible(S) then 
         return ∅  
     else 
         if S is a cell then 
             L ← label corresponding to S; 
             return L; 
         else 
             pick_dimension(j) 
            { = split_subspace(S, j) }iS
             for each S  i

                  L ← L Depth_First_Search( )  ∪ iS
              return L; 
Main : Depth_First_Search(whole search space W) 
 

                                                 
1 Convexity is actually stronger than the connectivity property.  



Theorem 7: Given an input spectrum b , a signature library 
K

1 2[ , ,...,  ]nA s s s=
K K K and a threshold vector , suppose 

the number of labels for  is k, then the number of LP calls 
invoked by the Crawling algorithm is O(kn). The number of 
index vectors stored in the queue is O(kn). □ 

0 1[ , ,..., ]dt t t t=
K

b
K

6. Data generation 
There is a fundamental difficulty in evaluating algorithms for 

labeling mass spectra: manual labeling of spectra (to create 
training sets) is laborious, and must additionally be cross-
validated by other kinds of co-located measurements, such as 
traditional filter-based or “wet chemistry” techniques.  For any 
given application, rigorously establishing appropriate “ground 
truth” datasets can take months of field-work.  In this section, we 
describe a detailed approach to synthetic data generation that 
allows us to use domain knowledge to create signature libraries 
and input particle spectra that reflect specific applications and 
instrument characteristics.  
     Our generator has two parts: generation of the signature 
library, and generation of input spectra.  We begin with a 
collection of real ion signatures, and select a set of n linearly 
independent signatures to serve as “seeds”.  New signatures are 
generated using a non-negative weighted average of seed 
signatures.  The set of all generated signatures is partitioned into 
two sets: the signature library, and the unknowns. 
     The generation of new signatures for the signature library is 
done in “groups” as follows, in order to control the degree of 
(non-)uniqueness, or ambiguity.  Each group consists of two 
“base” signatures from the seeds (chosen such that no seed 
appears in multiple groups) plus several “pseudo-signatures” 
obtained using non-negative weighted averages of these two 
signatures. The generated signatures in each group are effectively 
treated as denoting new ions in the signature library.  Of course, 
they do not correspond to real ions at all; rather, they represent 
ambiguity in that it is impossible to distinguish them from the 
weighted average of base signatures used to generate them when 
labeling an input spectrum that contains ions from this group.  
Intuitively, the larger the size of a group, the greater the 
ambiguity in input spectra that contain ions from the group; 
observe that interference can only occur within groups. We create 
a total of k groups with i+1 pseudo-signatures in group i. 
     The set of n original signatures plus the  pseudo-
signatures generated as above constitute our “universe” of all 
signatures.  Next, we select some of these signatures to be 
unknowns, as follows:  We randomly select one signature from 
each of the k groups; these k signatures are “interfering 
unknowns”.  We also randomly select u-k seed signatures that 
were not used in group generation; these u-k signatures are “non-
interfering unknowns”, giving us a total of u unknowns. 

( 3) / 2k k+ ⋅

   The second part of our generator is the generation of input 
spectra. An input spectrum is generated by selecting m signatures 
from the universe of signatures and adding them according to a 
weighting vector . Ambiguity and unknowns are controlled by 
the careful selection of signatures that contribute to the spectrum, 
and the input weighting vector controls the composition of the 
spectrum as well as the contribution of unknowns. We observe 
that the effect of many unknowns contributing to an input 
spectrum can be simulated by aggregating them into a single 
unknown signature with an appropriate weighting vector; 
accordingly, we use at most a single unknown signature. Table 4 
summarizes the parameters for spectrum generation. 

wK

 

Table 4: Parameters used for spectrum generation 

 

m number of signatures 
q number of groups 
wK  vector for the weight of the signatures 
o whether the unknown signature is used 
g average amount of noise 

       We begin by randomly selecting two signatures from group 
q. Then, if unknowns are desired in the generated spectrum 
(o=1), we choose either the qth unknown signature, or a randomly 
selected non-interfering unknown signature, depending on 
whether or not the unknown is desired to interfere with known 
ions  in the spectrum (v = 1 or 0).  The contribution of unknowns 
is controlled by the last component of the weighting vector. Next, 
we randomly select signatures from the signature library that do 
not belong to any of the k “groups” to get a total of m signatures.  
These signatures are linearly independent seeds, and thus the 
ambiguity of the generated spectrum will depend solely on the 
first 2 (or 3, if an interfering unknown is chosen) signatures.  
     Finally, we select values for m random variables following a 
normal distribution whose means are given by the weighting 
vector of arity m.  The values for these variables are used as the 
weights wi to combine the m signatures:

1

m
j jj

w s
−∑ . (We note that 

when an unknown signature is used in the generation, the last 
element of the weighting vector is reset to be the relative quantity 
of the unknown signature and the whole weighting vector is 
normalized to sum up to 1.) 
     We account for noise by simply adding a noise value (a 
random variable following a normal distribution) to each 
component (i.e., m/z position) of the generated spectrum.  
7. Experimental results 
     We now describe experiments to evaluate our labeling 
algorithms with respect to both quality and labeling speed. To 
give the reader an idea of the speed, we observed an average 
processing rate of about one spectrum per second when we ran 
our algorithms on over 10,000 real mass spectra collected using 
an ATOFMS instrument in Colorado and Minnesota; this is 
adequate for some settings, but not all, and further work is 
required. Speed and scalability are not the focus of this paper, but 
are addressed in [7], and extensive experiments are reported. We 
also tested the accuracy of our labeling algorithm against a small 
set of manually labeled spectra; all were correctly labeled by the 
algorithm. Admittedly, this is not an extensive test, but we are 
limited by the fact that manual labeling is a tedious and costly 
process. (This underscores the importance of not requiring 
training datasets.) 
     In this section, we therefore evaluate our algorithms using the 
data generator from Section 6; this approach also allows us to 
study the effect of ambiguity, unknown signatures and noise 
levels in a controlled fashion. For comparison, we also evaluated 
machine learning (ML) algorithms. However, the reader should 
note that our algorithms can label input spectra given only the 
signature library, whereas the ML approaches require extensive 
training datasets, which is unrealistic with manual labeling. In 
addition, the ML algorithm ignores equivalent alternatives and 
only generates one label. Nonetheless, we propose two different 
quality measures and include the comparison for completeness, 
and to motivate a promising direction for future work, namely the 
development of hybrid algorithms that combine the strengths of 
these approaches. 



7.1. Machine learning approach 
     Our ML algorithm builds upon WEKA classifiers [18]. For 
each signature in the signature library, we train a classifier to take 
a given input spectrum and output a presence category (absent, 
uncertain or present), i.e., to detect whether or not the ion 
represented by the signature is present in the particle represented 
by the spectrum. The predictive attributes are the (fixed set of) 
m/z locations, taking on as values the signal intensities at these 
locations in the input spectrum. To label a spectrum, we simply 
classify it using the classifiers for all signatures in the library. 
When we are only interested in the presence of a subset of ions, 
of course, we need only train and run the classifiers for the 
corresponding signatures. We evaluated four types of classifiers: 
Decision Trees (J48), Naïve Bayes, Decision Stumps, and Neural 
Networks. Decision Trees consistently and clearly outperformed 
the other three, and we therefore only compare our algorithms 
against this approach in the rest of this section. 

7.2. Datasets 
     The (common) dimension of all signatures and spectra is set to 
be 255. We used n=78 base signatures of real ions, and generated 
k=5 groups containing 2 to 6 pseudo-signatures respectively. 
Including the original 78, we thus obtained 98 signatures, 15 of 
which were withheld as unknown; the remaining 83 comprised 
the signature library. For generating input spectra, we set the 
number of signatures used for spectrum generation to be m=10. 
The relative proportion of these m signatures was controlled by 
the weighting vector [0.225, 0.2, 0.2, 0.1, 0.1, 0.06, 0.06, 0.03, 
0.01, 0.01].  
     We generated five testing datasets with controlled ambiguity, 
unknown signature and noise levels. Each dataset contains 
several files, each of which contains 1,000 spectra generated by 
using the same set of parameter values. Dataset 1 is designed to 
test the effect of noise. It consists of 10 files. Each file 
corresponds to a distinct noise level from 0% to 360% of a preset 
error bound, which is 0.01 of the total intensity. No ambiguity or 
unknown signature is involved in this dataset. Dataset 2 tests the 
effect of ambiguity. It consists of 5 files corresponding to 5 
ambiguity levels. Dataset 3 has no noise or ambiguity, but 
contains some non-interfering unknown signatures. This dataset 
contains ten files, with the weight on the unknown signature 
varying from 0% to 180% of the preset error bound. Dataset 4 is 
identical to Dataset 3 except that the unknown signatures selected 
are interfering unknowns. Dataset 5 is designed to test the 
combined effect of noise and ambiguity. Five ambiguity degrees 
used in Dataset 2 and five noise levels selected from the 10 noise 
levels used in Dataset 1 result in 25 different combinations of 
noise and ambiguity, and 25 files are generated for each such 
combination. The discretization criteria used for all the datasets 
above is controlled by a threshold vector [0, 0.08, 0.18, 1], which 
indicates absent, uncertain and present respectively. 

  
Figure 4:  Indistinguishable spectrum labels 

7.3. Labeling quality 
     Given a particle, consider the “ideal” version of its spectrum 
obtained by eliminating noise and unknowns, and is therefore 
strictly the weighted sum of known ion signatures present in the 
particle. Even such an ideal mass spectrum might not have 

unique labels. The spectrum shown in Figure 4 might represent a 
particle that contains ions A and B, or a particle that contains C 
and D. Given only the input spectrum, the combinations AB and 
CD are mathematically indistinguishable, and should be 
presented to domain experts for further study. The complete set 
of such “indistinguishable spectrum labels” for the “ideal” 
version of an input spectrum is the best result we can expect from 
labeling; we call each label in this set a correct label. Intuitively, 
it is the set of all feasible combinations of ions in the particle. 
This is exactly the label set of the ideal spectrum defined in 
Section 4 (with the error bound set to 0). By Theorem 7, our 
algorithms generate this label set when no unknown or noise is 
present, i.e., the ideal version is the given input spectrum itself. 
However, as noise and unknowns are added, the labels found by 
our algorithm will no longer be the same as the desired set of all 
correct labels. 
     Our first proposed metric comparing the result of a labeling 
algorithm with the set of all correct labels. This metric consists of 
two ratios: the hit ratio and false ratio. The hit ratio is the 
percentage of correct labels in the result set of the labeling 
algorithm. The false ratio is the proportion of labels in the result 
set that are not correct labels. Formally, let the label set of a 
particle’s ideal spectrum be TL  and let the set of labels found by 
a labeling algorithm for the particle’s real spectrum under the 
presence of noise and unknowns be OL : 

| | / | |T O THit Ratio L L L= ∩ | | / | |O T OFalse Ratio L L L= −

|

    

Experiments under this metric will be called full labeling tests, 
and are presented in Section 7.3.1. 
     Our second metric relaxes the requirement of finding the 
correct combinations of ions, and focuses on the proportion of 
individual ions whose presence or absence is correctly classified. 
Given a collection of interesting ions, we aggregate the set of 
correct spectrum labels to obtain a set of ion labels as 
follows: An ion of interest is marked present if all correct labels 
mark it as present, absent if all correct labels mark it as absent, 
and marked uncertain in all other cases. Similarly, we can obtain 
a set of ion labels from the result set of the labeling 
algorithm. Our second metric consists of two ratios based on 
these ion labels: 

TIL

OIL

| | / |T O TPartial Hit Ratio IL IL IL= ∩       
| | / |O T OPartial False Ratio IL IL IL |= −  

Partial hit ratio is similar to hit ratio, and describes the 
percentage of ions that are correctly labeled, while partial false 
ratio is the proportion of ions that are incorrectly labeled. 
Experiments under this second metric will be called partial 
labeling tests, and are presented in Section 7.3.2. 
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Figure 6: Effect of  
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of noise and unknowns combined with ambiguity. The figures 
only show hit ratio, since in our setting the false ratio is just 1- 
 
Figure 7: Effect of non-
interfering unknown 

Figure 8: Effect of 
interfering unknown 

 
     It is worth noting that for any given spectrum, our algorithms 
will generate exactly the same result. Therefore, for quality 
evaluation, we simply refer to them as “our algorithm” or the 
“LP” algorithm, since they both build upon linear programming. 
7.3.1. Full labeling tests In the following graphs, each data point 
for our algorithm is the average of results on 1000 spectra, while 
each data point for the ML algorithm is the result of 5-fold cross 
validation on the same dataset. Figure 5 shows the result on 
Dataset 1, which contains no ambiguity or unknowns. Even in 
this simple case, the ML algorithm performs poorly. Its hit ratio 
is close to zero while the false ratio is close to one. In contrast, 
our algorithm shows great strength in identifying a possible 
combination of ions to explain the spectrum. The hit ratio 
remains almost perfect when the noise is within 180% of error 
bound, but drops sharply when noise grows above that threshold. 
This shows a limitation of our algorithm: the error bound is the 
only component that accounts for noise, and our results are 
sensitive to the choice of the error bound relative to noise levels. 
While the error bound helps in accounting for noise, it also 
introduces a degree of freedom that allows incorrect labels to be 
included. Surprisingly, the false ratio, which measures the 
percentage of incorrect labels in the result, actually goes down as 
the noise level increases; the noise intuitively takes up the slack 
introduced by error bound. This observation suggests that we 
might be able to automatically tune the error bound by estimating 
the noise level. Figure 6 shows the results on Dataset 5, which 
contains both ambiguity and noise. As we can see, the already 
low hit ratio of the ML algorithm drops further, essentially to 
zero, and the false ratio goes over 95%. Our algorithm performs 
consistently well in Figure 6, demonstrating its ability to handle 
ambiguity even in the presence of noise. Figures 7 and 8 
summarize the experimental results on Datasets 3 and 4, which 
show the effect of unknowns. Intuitively, if the unknown ion is 
non-interfering, it acts like additional noise at some m/z 
positions, which makes it harder to compensate for. The hit ratio 
of our algorithm drops sharply when the non-interfering unknown 
proportion exceeds the error bound. The spike in the false ratio at 
the very end is an artifact caused by the fact that the number of 
labels found is reduced to one essentially, and that one is 
incorrect. The effect of interfering unknowns is more interesting. 
While it raises the false ratio as more and more unknowns are 
added, as expected, surprisingly, it also helps the hit ratio 
(because it can be interpreted as some linear combination of 
known signatures that effectively increases the quantity of the 
known signatures).   
7.3.2 Partial labeling tests We run the exact same set of 
experiments as for the Full Labeling Test, but apply the second 
metric. The ten signatures of interest are set to be those used to 
generate the spectrum, so that ambiguity w.r.t. the signatures of 
interest is still under control. Figures 9 and 10 illustrate the effect 

hit ratio. In both graphs, the triangle series show the hit ratio of 
our algorithm and the square/diamond series represent the ML 
algorithm. Solid lines represent the results on datasets with no 
ambiguity while dotted lines represent a dataset with ambiguity. 
The first observation is that the ML algorithm achieves decent 
performance under this metric, although it is still uniformly 
dominated by the LP algorithm. The performance degradation of 
the ML algorithm from diamond curves to square curves in both 
graphs again shows the weakness of the ML approach, namely its 
inability to handle ambiguity. Both noise and unknowns have a 
similar effect on our algorithm as in the full labeling tests. On the 
other hand, the almost horizontal hit ratio curves for the ML 
algorithm illustrate an interesting point: the ML algorithm tends 
to be less sensitive to unknowns than our algorithm. This is 
because our algorithm assumes complete knowledge of ion 
signatures and tries to combine all signatures simultaneously, 
whereas the ML algorithm simply looks at one ion at a time.  

 

    Overall, our algorithm clearly beats the ML algorithm in terms 
of labeling quality, even in partial labeling tests. In addition, the 
ML algorithm needs substantial training data. This is not realistic 
to get at all. However, the ML algorithm does show promise in 
partial labeling, which suggests a promising research direction, 
namely a hybrid algorithm that combines the speed of ML and 
the ambiguity-handling ability of our LP-based approach. 

  

Figure 9: Effect of noise Figure 10: Effect of 
unknowns 
 
Figure 11: Effect of 

ambiguity on label time 
Figure 12: Scalability w.r.t 

#signatures 
7.3.3 Labeling speed We ran efficiency tests on the five datasets 
described in Section 7.2. Results show that the presence of noise 
and unknown signature does not affect the performance of our 
algorithms much, unless the noise or weight on the non-
interfering unknown signature is significantly larger than the 
error bound. When no ambiguity is present, labeling takes about 
one second for both DFS and Crawling algorithms. However, as 
more ambiguity is included and the label set size increases 
sharply, the performance of our algorithms degrades 
significantly. Figure 11 shows the running time of our algorithms 
on Dataset 2, which contains five files of spectra with five 
different degrees of ambiguity.  Series 1 and 2 show the 
performance of DFS and Crawling algorithms. The Crawling 
algorithm exploits the convexity of the distance function and runs 
slightly faster than DFS, but both become much slower as 



ambiguity is increased. This is mainly due to the dramatic 
increase in the number of correct labels. The ML algorithm is 
much faster than our algorithms, but it is worth noting that when 
no ambiguity is involved and the number of correct labels is 
small, the running time of our algorithm is almost the same as for 
ML. In addition, the training time of the ML approach is not 
reflected at all in these graphs. Further, when we are only 
interested in detecting a small number of signatures, we can 
revise our DFS algorithm to only pick the signatures of interest 
and do partial labeling. This optimization greatly speeds up DFS, 
to about 100 spectra per second. Figure 12 summarizes the results 
of algorithm scalability with respect to the number of signatures 
in the signature library. 
7.4. Labeling spectra from a real application 

We now present results on data from a real application, 
comparing our labeling results with manual labeling by a domain 
expert. The spectra in our experiment come from particles 
collected in a diesel engine test. Most of the ions in our library 
are inorganic or simple organic. The signatures of most of ions 
have a single major peak, i.e., for signature {s =

K
1 2, ,...}I I , there 

exist  such that , for alliI iI I� j j i≠ . Hence, most of the 
ambiguity in the signature library comes from ions which have 
their major peaks at the same m/z value, although some of the 
signatures, such as Hg and TEANO3, do have multiple peaks.  

We used both our algorithms to label a set of 85 input 
spectra, with identical results. The labels were evaluated by a 
chemist who is studying the spectra. In this specific application, 
the goal is to detect all present ions rather than to quantify their 
abundance. Our algorithms performed remarkably well, correctly 
detecting the ions in 93% of the spectra.  

When our labeling algorithms failed, it was due to one of 
three reasons. First, there are ions which exist in the spectra but 
whose signatures are not included in the signature library. Our 
algorithms can tolerate some degree of “unknown” ions, in that 
unknown and “uninteresting” ions do not (usually) prevent us 
from identifying ions of interest (i.e., in the library).  However, if 
these ions are of interest to the scientist and must be identified 
when present, we require that they be included in the signature 
library. Overcoming this limitation requires us to detect certain 
“missing” signatures by comparing labels from multiple spectra, 
and is a direction for future work; such a step is currently not 
included in our model.  Even when we do include the correct 
label as an alternative, it is important to be able to identify the 
correct label and to distinguish it from the alternatives that arise 
due to ambiguity. Again, further work is needed in this area. 

The second problem is related to the ambiguity of the 
signature library. Some ions in the library have exact the same 
signature. It is impossible to distinguish these ions without 
integrating domain knowledge. This is another important 
direction for improvement. 

The third problem with our labeling result is peak “drifting”. 
Due to the interaction between different ions in the chamber of 
the mass spectrometer, the peak in the spectrum is actually not a 
spike that stands on one unique m/z value. Instead, it is a curve 
that is distributed over multiple m/z values. Our current model is 
sensitive to this type of error, and additional work is needed. 

8. Related work and conclusion 
Methods of categorizing aerosol particles using clustering and 

neural networks have been proposed [1,12,9,16], but none of 
them deals with the labeling problem directly. The linear 
programming method used in this paper is standard, see, e.g., 

[13]. Related nonlinear or integer programming tasks arising 
from the use of Euclidean distance or discretization are also well 
studied in the optimization community [6,13,19]. Recent work on 
knowledge-based optimization and machine learning [8,17] are 
promising extensions to the framework we propose. Machine 
learning methods such as clustering [5,20] can be applied to our 
basic linear programming approach by helping identify better 
initial points and optimization constraints.  

Our future work includes finding better labeling algorithms, 
utilizing domain knowledge in the labeling process, discovering 
unknown signatures and validating our algorithm on real data. 
Interested readers can check the technical report [10] for detailed 
discussion. 
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