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Introduction:

In this project stage, we designed a machine learning and rule-based matcher which
predicts whether two product descriptions correspond to the same (match) product
or not (mismatch).

For this project stage, we were given 20K labelled product pairs, from which 10K
pairs are randomly sampled (set X) to train our model. The remaining 10K samples
(set Y) are used to evaluate our model. Below is the performance of our matcher
(trained on set X and applied on set Y):

Blind test results (Stage 3):
Precision: 97.16%
Recall: 91.80%
F1:94.41%

Previous results on Set Y (Stage 3):
Precision: 96.07%

Recall: 89.29%

F1: 92.55%

Final Results on Set Y (Stage 4):
Precision: 96.13%

Recall: 92.06%

F1: 94.06%

Details about the Matcher:

Design of feature vector:
Our Matcher M is designed using features derived from the product tuple pair. For
each tuple we used the following attributes to design our feature vector:

Attributes used to design feature vector:
1. NAME = "Product Name"

TYPE = "Product Type"

CLASS = "Product Segment"

BRAND = "Brand"

CATE = "Category"
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6. GTIN ="GTIN"

7. COMP = "Country of Origin: Components"
8. SHDC = "Product Short Description"

9. UPC ="UPC"

10. MANF_PART = "Manufacturer Part Number"
11.WARR = "Warranty Information"

12.MANF = "Manufacturer"

13.COLOR = "Color"

14.PROD_LEN = "Assembled Product Length"
15.ACTUAL_COLOR = "Actual Color"

We computed similarity measures for every attribute listed above, namely

Jaccard

Cosine

Levenshtein

Jaro

Jaro with g-gram = 3
Smith-Waterman
Jaro-winkler
Needleman-wunsch
9. Affine

10.Jaccard

11. Overlap coefficient
12.Cosine
13.Monge-elkan
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In addition, for each pair we also used the lengths of the attributes (2 per attribute)
as a feature which gave us an additional ~1% improvement in Precision and ~2% in
Recall. So for each tuple we have in total #attribute x #similarity measure (15 x (13 +
2) = 15 x 15) dimensional feature vector. We trained several machine learning
models using this feature vector. Based on our experiments and observations,
Random Forest achieves the highest precision/recall.

Model used: Random Forest

In this model, we learn a set of decision trees where each node in the decision tree
represents a condition on some attribute to split the tree based on the cross entropy
of the attribute.



Training and Testing phase:

First we split dataset into two sets: Set X (training set) and Set Y (test set). Each set
consists of 10K tuple pairs.

- Training phase:

1. For each tuple pair in the Set X, we compute a 15 x 15 dimensional feature
vector using the similarity measures and length of the attributes as described
above.

2. Train Random Forest classifier with number of estimators = 1000, which
achieves the best performance based on our experiments.

- Test phase:
1. Apply the constructed Matcher M above on the Set Y.
2. Get the predicted labels and calculate the confidence score for each label.
3. Apply threshold on confidence score. We used threshold = 0.235.
4. Labels with confidence score < threshold are predicted as “unknown”. Rest

are considered as valid prediction by model.
5. Calculate the precision and recall to estimate the performance of the model.

*Confidence score is computed as the difference between the likelihood of one label
and another predicted by the Random Forest classifier.

The above technique gave us precision/recall of 96/89% on set Y. We further applied

rule-based techniques to postprocess the labeling and improve the performance in
stage 4.

Rule-based techniques:

After the model predicts the labels, we applied rules to see if a tuple pair match.
Specifically we look at some critical attributes of the product pair. Two products are
definitely different if these attributes are different. In particular we used the following
rules:

1. For product category: Batteries, we used the rule that if mAH rating does not
match, it is a mismatch
Corresponding Regex: re.search("\s[0-9]+\s*mah\s", prod_name.lower())

2. Color: For products like iPhone, iPad, Mac, we figured that if color doesn’t
match, then the entire product pair must be a mismatch. We write a color



extractor to extract color from the product description and compares the color
of two products. If they are not the same, output mismatch.

Other rules that we tried which did not give us much improvement:

1. Refurbished: If a prod1[*name”] contains keyword “refurbished” in the product
name but prod2[‘name”] doesn’t or vice versa, we consider it to be a
mismatch. However, there were several examples where this was not really
true.

2. Assembled length/width: There are products with different assembled
length/width but still they match.

Example (matched):
- Epson Expression Home XP-400 Small-in-One
Printer/Copier/Scanner
- Epson Expression Home C11CC07201 XP-400 Wireless
All-in-One (Refurbished)

Final Results on Set Y (Stage 4):
Precision: 96.13%

Recall: 92.06%

F1: 94.06%

Discussion: Why can’t P/R be further improved?

Because the rules are not generic enough to even cover a significant number of
mis-labelled pairs of a specific type. For example, there is no rule for specific product
TVs which could look at the size and identify if it is a mismatch or match.

What’'s more, the data has lots of missing values. Usually one product tuple in the
tuple pair misses a value in an attribute while the other does not. This makes a
rule-based comparison very difficult.

Another problem as mentioned in the previous section is that some product names
contain confusing information. For example, initially we thought that if one product
has keyword “Refurbished” in its Product Name or one of its other attributes while
the other doesn’t, then they should be labelled Mismatch. However, it turns out that
there are such pair that is labelled Match.



Furthermore, the above remark also concerns the attributes such as Assembled
Product Weight/Height, where even if the corresponding attributes of both products
are present and different, they can still be a match. So indeed, we could not use
these attributes when writing rules, for otherwise it might negatively affected the
already computed true positives, which is proven in our experiment.

Feedback on the python string matching package:

We did not spot anything wrong regarding the result from the library functions.
However, some of the functions in the package are pretty slow. This especially
concerns the following: Needleman-wunsch, Smith-waterman, Affine,
Monge-elkan.

Thus, it would be better if the time complexity of those functions are added into the
documentation so that user of the package can make some trade-off between time
and performance in advance.

Also, for missing values (None in Python), the package can provide some default
parameters that automatically fill up the missing value. In this way, users don’t need
to write their own ‘wrapper’ function for every similarity function in the library. In the
current package, the function will throw an error if any parameter is None.

Another essentially important remark is that some functions do not return values
strictly in the range [0, 1] like Levenshtein, Smith-waterman which return
non-negative values, and Needleman-wunsch, Affine which sometimes return
negative integer values. Therefore if there were an additional flag inside as a
parameter in the functions setting which set to true would have them return a
normalized value (between 0 and 1), it would free users in the future from not only
having to write ‘wrapper’ normalizers but also from looking into the description of
these functions, which could be very much confusing and time-consuming.

There is also an in-built package in Python called difflib providing a class
SequenceMatcher which can be used for computing the similarities between two
strings. However, it is very rudimentary in a way that it contains only a few functions
and therefore it is not appropriate for data scientists.

So if the above-mentioned remarks are to be taken into account, the
py-stringmatching package would be a great contribution to the field of the practical
data science.



