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Who Am I?

• With Condor since 2001
• Developer of the Core Condor Software
• Part of the CHTC (Center for High-

Throughput Computing) engagement 
team at UW-Madison

• Taught at previous summer schools
• Eu gosto muito a musica de brasil! :)
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Overview of day

• Lectures alternating with exercises
− Emphasis on lots of exercises

− Hopefully overcome PowerPoint fatigue
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Overview of day

• It’s okay to move ahead on exercises if 
you have time

• It’s okay to take longer on them if you 
need to

• If you move along quickly, try the “On Your 
Own” sections and “Challenges”
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Most important!

• Please ask me questions!
− During the lectures

− During the exercises

− During the breaks

− Via email
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Before we start

• If you haven't already, do the exercise 
from Monday on getting a certificate 
sometime today!

−

It is 

required 

for all exercises Wednesday-Thursday.
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Goals for this session

• Understand basics of high-throughput 
computing

• Understand the basics of Condor
• Run a basic Condor job

7



OSG School São Paulo 2010

What is high-throughput computing? 
(HTC)

• An approach to distributed computing 
that focuses on long-term throughput, 
not instantaneous computing power.
− We don’t care about operations per second

− We care about operations per year

• Implications:
− Focus on reliability

− Use all available resources (not just high-end supercomputers)
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Good uses of HTC

• “I need as many simulation results as 
possible before my deadline…”

• “I  have lots of small-ish independent 
tasks that can be run indepdently”
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What’s not HTC?

• The need for “real-time” results:
− (Ignore fact “real-time” is hard to define.)

− HTC is less worried about latency (delay to answer) than total throughput

• The need to maximize FLOPS
− “I must use the latest supercomputer, because I need the fastest computer/

network/storage/…”
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An example problem: BLAST

• A scientist has:
− Question: Does a protein sequence occur in other organisms?

− Data: lots of protein sequences from various organisms

− Parameters: how to search the database.

• More throughput means
− More protein sequences queried

− Larger/more protein data bases examined

− More parameter variation

• We’ll try out BLAST later today
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Why is HTC hard?

• The HTC system has to keep track of:
− Individual tasks  (a.k.a. jobs) & their inputs

− Computers that are available 

• The system has to recover from failures
− There will be failures! Distributed computers means more chances for failures.

• You have to share computers
 Sharing can be within an organization, or between orgs

 So you have to worry about security.

 And you have to worry about policies on how you share.

• If you use a lot of computers, you have to deal variety:
− Different kinds of computers (arch, OS, speed, etc..)

− Different kinds of storage (access methodology, size, speed, etc…)

− Different networks interacting (network problems are hard to debug!)
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Let’s take one step at a time

• Can you run one job on one 
computer?

• Can you run one job on another local 
computer?

• Can you run 10 jobs on a set of local 
computers?

• Can you run 1 job on a remote 
computer?

• Can you run 10 jobs at a remote site?
• Can you run a mix of jobs here and 

remotely?
• This is the (rough) progress we’ll take 

in the school.
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Discussion

• For 5 minutes, talk to a neighbor: If you 
want to run one job in a local cluster of 
computers:

 What do you (the user) need to provide so a single job can be run

 What does the system need to provide so your single job can be run? 

 Think of this as a set of processes: what needs happen when the job is given? A “process” 

could be a computer process, or just an abstract task.
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One answer: 
What does the user provide? 

• A “headless job”.
− Not interactive (no GUI): how do you interact with 1000 simultaneous jobs?

• A set of input files
• A set of output files.
• A set of parameters (command-line arguments).
• Requirements:

− Ex: My job requires at least 2GB of RAM.

− Ex: My job requires Linux.

• Control:
− Ex: Send me email when the job is done.

− Ex: Job 2 is more important than Job 1.

− Ex: Kill my job if it’s run for more than 6 hours.
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One answer: 
What does the system provide? 

• Methods to:
− Submit/Cancel job.

− Check on state of job.

− Check on state of avail. computers.

• Processes to:
− Reliably track set of submitted jobs.

− Reliably track set of available computers.

− Decide which job runs on where.

− Advertise a single computer.

− Start up a single job.
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Surprise!
Condor does this (and more)

• Methods to:

−
Submit/Cancel job. 

condor_submit/condor_rm

−
Check on state of job. 

condor_q

−
Check on state of avail. computers. 

condor_status

• Processes to:

−
Reliably track set of submitted jobs. 

schedd

−
Reliably track set of avail. computers.

 
collector

−
Decide which job runs on where. 

negotiator

−
Advertise a single computer 

startd

−
Start up a single job 

starter
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A brief introduction to Condor
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Quick Terminology

• Cluster: A dedicated set of computers 
not for interactive use

• Pool: A collection of computers used by 
Condor
− May be dedicated

− May be interactive
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Matchmaking

• Matchmaking is fundamental to Condor
• Matchmaking is two-way

− Job describes what it requires:

I need Linux && 8 GB of RAM
− Machine describes what it requires:

I will only run jobs from the Physics department

• Matchmaking allows preferences

−
I 

need

 Linux, and I 

prefer

 machines with more memory but will run on any machine you 

provide me
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Why Two-way Matching?

• Condor conceptually divides people into 
three groups:
− Job submitters

− Machine owners

− Pool (cluster) administrator

• All three of these groups have 
preferences

}
May or may not

be the same

people
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ClassAds

• ClassAds state facts
− My job’s executable is analysis.exe

− My machine’s load average is 5.6

• ClassAds state preferences
− I require a computer

   with Linux
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ClassAds

• ClassAds are:
– semi-structured

– user-extensible

– schema-free

– Attribute = Expression

Example:
MyType       = "Job"

TargetType   = "Machine"

ClusterId    = 1377

Owner        = "zmiller“

Cmd          = “analysis.exe“

Requirements = 

   (Arch == "INTEL") 

&& (OpSys == "LINUX") 

&& (Disk >= DiskUsage) 

&& ((Memory * 1024)>=ImageSize)

…

String

Number

Boolean
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Schema-free ClassAds

• Condor imposes some schema
− Owner is a string, ClusterID is a number…

• But users can extend it however they like, for 
jobs or machines
− AnalysisJobType = “simulation”

− HasJava_1_4 = TRUE

− ShoeLength = 7

• Matchmaking can use these attributes
− Requirements = OpSys == "LINUX" 

      && HasJava_1_4 == TRUE
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Submitting jobs

• Users submit jobs from a computer
− Jobs described as ClassAds

− Each submission computer has a queue

−
Queues are 

not

 centralized

− Submission computer watches over queue

− Can have multiple submission computers

− Submission handled by condor_schedd

a

acbb
x

2
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Condor_schedd
Queue
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Advertising computers

• Machine owners describe computers
− Configuration file extends ClassAd

− ClassAd has dynamic features

 Load Average

 Free Memory

 …

− ClassAds are sent to Matchmaker

Matchmaker

(Collector)
ClassAd

Type = “Machine”

Requirements = “…”
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Matchmaking

• Negotiator collects list of computers
• Negotiator contacts each schedd

− What jobs do you have to run?

• Negotiator compares each job to each computer
− Evaluate requirements of job & machine

− Evaluate in context of both ClassAds

− If both evaluate to true, there is a match

• Upon match, schedd contacts execution computer
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Matchmaking

Service

Job queue service

Information 

service

Matchmaking diagram

condor_schedd

Queue

Matchmaker

CollectorNegotiator

12
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Manages

Remote Job

Manages Machine

Running a Job

condor_schedd

Queue

Matchmaker

condor_collectorcondor_negotiator

condor_startd

condor_submit

Manages 

Local Job
condor_shadow condor_starter

Job
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Condor processes

• Master: Takes care of other processes
• Collector: Stores ClassAds
• Negotiator: Performs matchmaking
• Schedd: Manages job queue
• Shadow: Manages job (submit side)
• Startd: Manages computer
• Starter: Manages job (execution side)
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If you forget most of these
remember two (for other lectures)

• Master: Takes care of other processes
• Collector: Stores ClassAds
• Negotiator: Performs matchmaking
• Schedd: Manages job queue
• Shadow: Manages job (submit side)
• Startd: Manages computer
• Starter: Manages job (execution side)

 Startd: Manages computer

 Schedd: Manages job queue
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Some notes

• One negotiator/collector per pool
• Can have many schedds (submitters)
• Can have many startds (computers)
• A machine can have any combination of:

− Just a startd (typical for a dedicated cluster)

− schedd + startd (perhaps a desktop)

− Personal Condor: everything
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Example Pool 1

Single Schedd

(One job queue)

Matchmaker

Dedicated Cluster

(Machine Room)



OSG School São Paulo 2010

Example Pool 1a

Schedd

(One job queue)

Matchmaker

Dedicated Cluster

(Machine Room)

Fail-Over 

Matchmakers

Fail-Over 

Schedd
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Example Pool 2

Desktop Schedds

& Execute Nodes

(Many job queues)

Matchmaker

Dedicated Cluster

(Machine Room)

Note: Condor’s policy capabilities

let you choose when desktops act

as execute nodes.
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Our Condor Pools

• Each computer is also a submit computer
− treinamento[01]-[19].ncc.unesp.br

• One local set of Condor execute nodes:
− About 19 computers, nearly 80 available “batch slots”

• Remote resources on “the Grid”
− For Wednesday, not today.
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Our Condor Pool
Name          OpSys       Arch   State      Activity LoadAv Mem   ActvtyTime

slot1@treinamento0 LINUX      X86_64 Unclaimed Idle     0.570   498  0+01:52:06
slot2@treinamento0 LINUX      X86_64 Unclaimed Idle     0.000   498  0+05:52:20
slot3@treinamento0 LINUX      X86_64 Unclaimed Idle     0.000   498  0+05:52:21
slot4@treinamento0 LINUX      X86_64 Unclaimed Idle     0.000   498  0+05:52:22
slot1@treinamento0 LINUX      X86_64 Unclaimed Idle     0.230   498  0+01:51:07
slot2@treinamento0 LINUX      X86_64 Unclaimed Idle     0.000   498  0+05:51:24
slot3@treinamento0 LINUX      X86_64 Unclaimed Idle     0.000   498  0+05:51:25
slot4@treinamento0 LINUX      X86_64 Unclaimed Idle     0.000   498  0+05:51:26

...

                     Total Owner Claimed Unclaimed Matched Preempting Backfill

        X86_64/LINUX    72     0       0        72       0          0        0

               Total    72     0       0        72       0          0        0
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That was a whirlwind tour!

• Let’s get some hands-on experience with 
Condor, to solidify this knowledge.

38

• Goal: Check out our 
installation, run some 
basic jobs.
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Questions?

• Questions? Comments?
− Feel free to ask me questions later:

Zach Miller <zmiller@cs.wisc.edu>
• Upcoming sessions

− 9:30-10:30

 Hands-on exercises

− 10:30 – 10:45

 Coffe Break

− 10:45 – 12:30

 More!
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