
An Introduction to
High-Throughput Computing With

Condor
Tuesday morning, 9am

Zach Miller <zmiller@cs.wisc.edu>

University of Wisconsin-Madison

OSG School São Paulo 2010

Who Am I?

• With Condor since 2001
• Developer of the Core Condor Software
• Part of the CHTC (Center for High-

Throughput Computing) engagement
team at UW-Madison

• Taught at previous summer schools
• Eu gosto muito a musica de brasil! :)

2

OSG School São Paulo 2010

Overview of day

• Lectures alternating with exercises
− Emphasis on lots of exercises

− Hopefully overcome PowerPoint fatigue

3

OSG School São Paulo 2010

Overview of day

• It’s okay to move ahead on exercises if
you have time

• It’s okay to take longer on them if you
need to

• If you move along quickly, try the “On Your
Own” sections and “Challenges”

4

OSG School São Paulo 2010

Most important!

• Please ask me questions!
− During the lectures

− During the exercises

− During the breaks

− Via email

5

OSG School São Paulo 2010

Before we start

• If you haven't already, do the exercise
from Monday on getting a certificate
sometime today!

−

It is

required

for all exercises Wednesday-Thursday.

6

OSG School São Paulo 2010

Goals for this session

• Understand basics of high-throughput
computing

• Understand the basics of Condor
• Run a basic Condor job

7

OSG School São Paulo 2010

What is high-throughput computing?
(HTC)

• An approach to distributed computing
that focuses on long-term throughput,
not instantaneous computing power.
− We don’t care about operations per second

− We care about operations per year

• Implications:
− Focus on reliability

− Use all available resources (not just high-end supercomputers)

8

OSG School São Paulo 2010

Good uses of HTC

• “I need as many simulation results as
possible before my deadline…”

• “I have lots of small-ish independent
tasks that can be run indepdently”

9

OSG School São Paulo 2010

What’s not HTC?

• The need for “real-time” results:
− (Ignore fact “real-time” is hard to define.)

− HTC is less worried about latency (delay to answer) than total throughput

• The need to maximize FLOPS
− “I must use the latest supercomputer, because I need the fastest computer/

network/storage/…”

10

OSG School São Paulo 2010

An example problem: BLAST

• A scientist has:
− Question: Does a protein sequence occur in other organisms?

− Data: lots of protein sequences from various organisms

− Parameters: how to search the database.

• More throughput means
− More protein sequences queried

− Larger/more protein data bases examined

− More parameter variation

• We’ll try out BLAST later today

11

OSG School São Paulo 2010

Why is HTC hard?

• The HTC system has to keep track of:
− Individual tasks (a.k.a. jobs) & their inputs

− Computers that are available

• The system has to recover from failures
− There will be failures! Distributed computers means more chances for failures.

• You have to share computers
 Sharing can be within an organization, or between orgs

 So you have to worry about security.

 And you have to worry about policies on how you share.

• If you use a lot of computers, you have to deal variety:
− Different kinds of computers (arch, OS, speed, etc..)

− Different kinds of storage (access methodology, size, speed, etc…)

− Different networks interacting (network problems are hard to debug!)

12

OSG School São Paulo 2010

Let’s take one step at a time

• Can you run one job on one
computer?

• Can you run one job on another local
computer?

• Can you run 10 jobs on a set of local
computers?

• Can you run 1 job on a remote
computer?

• Can you run 10 jobs at a remote site?
• Can you run a mix of jobs here and

remotely?
• This is the (rough) progress we’ll take

in the school.

13

Small

Large

Local

Distributed

OSG School São Paulo 2010

Discussion

• For 5 minutes, talk to a neighbor: If you
want to run one job in a local cluster of
computers:

 What do you (the user) need to provide so a single job can be run

 What does the system need to provide so your single job can be run?

 Think of this as a set of processes: what needs happen when the job is given? A “process”

could be a computer process, or just an abstract task.

14

OSG School São Paulo 2010

One answer:
What does the user provide?

• A “headless job”.
− Not interactive (no GUI): how do you interact with 1000 simultaneous jobs?

• A set of input files
• A set of output files.
• A set of parameters (command-line arguments).
• Requirements:

− Ex: My job requires at least 2GB of RAM.

− Ex: My job requires Linux.

• Control:
− Ex: Send me email when the job is done.

− Ex: Job 2 is more important than Job 1.

− Ex: Kill my job if it’s run for more than 6 hours.

15

OSG School São Paulo 2010

One answer:
What does the system provide?

• Methods to:
− Submit/Cancel job.

− Check on state of job.

− Check on state of avail. computers.

• Processes to:
− Reliably track set of submitted jobs.

− Reliably track set of available computers.

− Decide which job runs on where.

− Advertise a single computer.

− Start up a single job.

16

OSG School São Paulo 2010

Surprise!
Condor does this (and more)

• Methods to:

−
Submit/Cancel job.

condor_submit/condor_rm

−
Check on state of job.

condor_q

−
Check on state of avail. computers.

condor_status

• Processes to:

−
Reliably track set of submitted jobs.

schedd

−
Reliably track set of avail. computers.

collector

−
Decide which job runs on where.

negotiator

−
Advertise a single computer

startd

−
Start up a single job

starter

17

OSG School São Paulo 2010

A brief introduction to Condor

18

OSG School São Paulo 2010

Quick Terminology

• Cluster: A dedicated set of computers
not for interactive use

• Pool: A collection of computers used by
Condor
− May be dedicated

− May be interactive

OSG School São Paulo 2010

Matchmaking

• Matchmaking is fundamental to Condor
• Matchmaking is two-way

− Job describes what it requires:

I need Linux && 8 GB of RAM
− Machine describes what it requires:

I will only run jobs from the Physics department

• Matchmaking allows preferences

−
I

need

 Linux, and I

prefer

 machines with more memory but will run on any machine you

provide me

OSG School São Paulo 2010

Why Two-way Matching?

• Condor conceptually divides people into
three groups:
− Job submitters

− Machine owners

− Pool (cluster) administrator

• All three of these groups have
preferences

}
May or may not

be the same

people

OSG School São Paulo 2010

ClassAds

• ClassAds state facts
− My job’s executable is analysis.exe

− My machine’s load average is 5.6

• ClassAds state preferences
− I require a computer

 with Linux

OSG School São Paulo 2010

ClassAds

• ClassAds are:
– semi-structured

– user-extensible

– schema-free

– Attribute = Expression

Example:
MyType = "Job"

TargetType = "Machine"

ClusterId = 1377

Owner = "zmiller“

Cmd = “analysis.exe“

Requirements =

 (Arch == "INTEL")

&& (OpSys == "LINUX")

&& (Disk >= DiskUsage)

&& ((Memory * 1024)>=ImageSize)

…

String

Number

Boolean

OSG School São Paulo 2010

Schema-free ClassAds

• Condor imposes some schema
− Owner is a string, ClusterID is a number…

• But users can extend it however they like, for
jobs or machines
− AnalysisJobType = “simulation”

− HasJava_1_4 = TRUE

− ShoeLength = 7

• Matchmaking can use these attributes
− Requirements = OpSys == "LINUX"

 && HasJava_1_4 == TRUE

OSG School São Paulo 2010

Submitting jobs

• Users submit jobs from a computer
− Jobs described as ClassAds

− Each submission computer has a queue

−
Queues are

not

 centralized

− Submission computer watches over queue

− Can have multiple submission computers

− Submission handled by condor_schedd

a

acbb
x

2

42 −±−=

Condor_schedd
Queue

OSG School São Paulo 2010

Advertising computers

• Machine owners describe computers
− Configuration file extends ClassAd

− ClassAd has dynamic features

 Load Average

 Free Memory

 …

− ClassAds are sent to Matchmaker

Matchmaker

(Collector)
ClassAd

Type = “Machine”

Requirements = “…”

OSG School São Paulo 2010

Matchmaking

• Negotiator collects list of computers
• Negotiator contacts each schedd

− What jobs do you have to run?

• Negotiator compares each job to each computer
− Evaluate requirements of job & machine

− Evaluate in context of both ClassAds

− If both evaluate to true, there is a match

• Upon match, schedd contacts execution computer

OSG School São Paulo 2010

Matchmaking

Service

Job queue service

Information

service

Matchmaking diagram

condor_schedd

Queue

Matchmaker

CollectorNegotiator

12

3

OSG School São Paulo 2010

Manages

Remote Job

Manages Machine

Running a Job

condor_schedd

Queue

Matchmaker

condor_collectorcondor_negotiator

condor_startd

condor_submit

Manages

Local Job
condor_shadow condor_starter

Job

OSG School São Paulo 2010

Condor processes

• Master: Takes care of other processes
• Collector: Stores ClassAds
• Negotiator: Performs matchmaking
• Schedd: Manages job queue
• Shadow: Manages job (submit side)
• Startd: Manages computer
• Starter: Manages job (execution side)

OSG School São Paulo 2010

If you forget most of these
remember two (for other lectures)

• Master: Takes care of other processes
• Collector: Stores ClassAds
• Negotiator: Performs matchmaking
• Schedd: Manages job queue
• Shadow: Manages job (submit side)
• Startd: Manages computer
• Starter: Manages job (execution side)

 Startd: Manages computer

 Schedd: Manages job queue

OSG School São Paulo 2010

Some notes

• One negotiator/collector per pool
• Can have many schedds (submitters)
• Can have many startds (computers)
• A machine can have any combination of:

− Just a startd (typical for a dedicated cluster)

− schedd + startd (perhaps a desktop)

− Personal Condor: everything

OSG School São Paulo 2010

Example Pool 1

Single Schedd

(One job queue)

Matchmaker

Dedicated Cluster

(Machine Room)

OSG School São Paulo 2010

Example Pool 1a

Schedd

(One job queue)

Matchmaker

Dedicated Cluster

(Machine Room)

Fail-Over

Matchmakers

Fail-Over

Schedd

OSG School São Paulo 2010

Example Pool 2

Desktop Schedds

& Execute Nodes

(Many job queues)

Matchmaker

Dedicated Cluster

(Machine Room)

Note: Condor’s policy capabilities

let you choose when desktops act

as execute nodes.

OSG School São Paulo 2010

Our Condor Pools

• Each computer is also a submit computer
− treinamento[01]-[19].ncc.unesp.br

• One local set of Condor execute nodes:
− About 19 computers, nearly 80 available “batch slots”

• Remote resources on “the Grid”
− For Wednesday, not today.

OSG School São Paulo 2010

Our Condor Pool
Name OpSys Arch State Activity LoadAv Mem ActvtyTime

slot1@treinamento0 LINUX X86_64 Unclaimed Idle 0.570 498 0+01:52:06
slot2@treinamento0 LINUX X86_64 Unclaimed Idle 0.000 498 0+05:52:20
slot3@treinamento0 LINUX X86_64 Unclaimed Idle 0.000 498 0+05:52:21
slot4@treinamento0 LINUX X86_64 Unclaimed Idle 0.000 498 0+05:52:22
slot1@treinamento0 LINUX X86_64 Unclaimed Idle 0.230 498 0+01:51:07
slot2@treinamento0 LINUX X86_64 Unclaimed Idle 0.000 498 0+05:51:24
slot3@treinamento0 LINUX X86_64 Unclaimed Idle 0.000 498 0+05:51:25
slot4@treinamento0 LINUX X86_64 Unclaimed Idle 0.000 498 0+05:51:26

...

 Total Owner Claimed Unclaimed Matched Preempting Backfill

 X86_64/LINUX 72 0 0 72 0 0 0

 Total 72 0 0 72 0 0 0

OSG School São Paulo 2010

That was a whirlwind tour!

• Let’s get some hands-on experience with
Condor, to solidify this knowledge.

38

• Goal: Check out our
installation, run some
basic jobs.

OSG School São Paulo 2010

Questions?

• Questions? Comments?
− Feel free to ask me questions later:

Zach Miller <zmiller@cs.wisc.edu>
• Upcoming sessions

− 9:30-10:30

 Hands-on exercises

− 10:30 – 10:45

 Coffe Break

− 10:45 – 12:30

 More!

39

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

