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Before we begin…

• Any questions on the lectures or 
exercises up to this point?
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How can my jobs access their 
data?
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Access to Data in Condor

• Use shared filesystem if available
− We'll be using some data from an NFS share

• No shared filesystem?

−
Condor can transfer files

 Can automatically send back changed files

 Atomic transfer of multiple files

 Can be encrypted over the wire

 This is what we’ll do in the exercises

− Remote I/O Socket

− Standard Universe can use remote system calls (more on this later)
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Universe   = vanilla

Executable = my_job

Log        = my_job.log

ShouldTransferFiles   = IF_NEEDED

Transfer_input_files  = dataset$(Process), common.data

Queue 600

Condor File Transfer

• ShouldTransferFiles = YES
− Always transfer files to execution site

• ShouldTransferFiles = NO
− Rely on a shared filesystem

• ShouldTransferFiles = IF_NEEDED
− Will automatically transfer the files if the submit and execute machine are not in the same 

FileSystemDomain
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Some of the machines in the Pool 
do not have enough memory or 
scratch disk space to run my job!
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Specify Requirements

• An expression (syntax similar to C or Java)
• Must evaluate to True for a match to be made

Universe     = vanilla
Executable   = my_job
Log          = my_job.log
InitialDir   = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Queue 600
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Specify Rank

• All matches which meet the requirements can 
be sorted by preference with a Rank 
expression. 

• Higher the Rank, the better the match
Universe   = vanilla
Executable = my_job
Log        = my_job.log
Arguments  = -arg1 –arg2
InitialDir = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Rank = (KFLOPS*10000) + Memory
Queue 600
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My jobs run for 20 days…

• What happens when they get pre-
empted?

• How can I add fault tolerance to 
my jobs?
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Condor’s Standard Universe 
to the rescue!

• Condor can support various combinations of 
features/environments in different “Universes”

• Different Universes provide different functionality 
for your job:
− Vanilla: Run any serial job

− Standard: Support for transparent process               checkpoint and 

restart
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Process Checkpointing

• Condor’s process checkpointing mechanism 
saves the entire state of a process into a 
checkpoint file
− Memory, CPU, I/O, etc.

• The process can then be restarted from 
right where it left off

• Typically no changes to your job’s source 
code needed—however, your job must be 
relinked with Condor’s Standard Universe 
support library
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Relinking Your Job for Standard Universe

To do this, just place “condor_compile” in 
front of the command you normally use to 
link your job:
% condor_compile gcc -o myjob myjob.c

- OR -

% condor_compile f77 -o myjob filea.f 
fileb.f
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Limitations of the 
Standard Universe

• Condor’s checkpointing is not at the 
kernel level.  Thus in the Standard 
Universe the job may not:
− fork()

− Use kernel threads

− Use some forms of IPC, such as pipes and shared memory

• Many typical scientific jobs are OK
• Must be same gcc as Condor was built 

with
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When will Condor checkpoint your job?

• Periodically, if desired (for fault tolerance)
• When your job is preempted by a higher priority 

job
• When your job is vacated because the execution 

machine becomes busy
• When you explicitly run:

− condor_checkpoint

− condor_vacate

− condor_off

− condor_restart
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Remote System Calls

• I/O system calls are trapped and sent back to 
submit machine

• Allows transparent migration across 
administrative domains
− Checkpoint on machine A, restart on B

• No source code changes required
• Language independent
• Opportunities for application steering
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Job
I/O

Lib

Remote I/O

condor_schedd condor_startd

condor_shadow condor_starter

File
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Clusters and Processes

• If your submit file describes multiple jobs, we call 
this a “cluster”

• Each cluster has a unique “cluster number”
• Each job in a cluster is called a “process”

−  Process numbers always start at zero

• A Condor “Job ID” is the cluster number, a 
period, and the process number (“20.1”)

• A cluster is allowed to have one or more 
processes.
− There is always a cluster for every job
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Example Submit Description File 
for a Cluster

# Example submit description file that defines a
# cluster of 2 jobs with separate working directories
Universe   = vanilla
Executable = my_job
log        = my_job.log
Arguments  = -arg1 -arg2
Input      = my_job.stdin
Output     = my_job.stdout
Error      = my_job.stderr
InitialDir = run_0
Queue   Becomes job 2.0
InitialDir = run_1
Queue   Becomes job 2.1
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% condor_submit my_job.submit-file

Submitting job(s).

2 job(s) submitted to cluster 2.

% condor_q

-- Submitter: perdita.cs.wisc.edu : <128.105.165.34:1027> : 

 ID      OWNER          SUBMITTED     RUN_TIME ST PRI SIZE CMD

  2.0    frieda         4/15 06:56  0+00:00:00 I  0   0.0  my_job

  2.1    frieda         4/15 06:56  0+00:00:00 I  0   0.0  my_job

2 jobs; 2 idle, 0 running, 0 held

Submitting The Job
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Submit Description File for a BIG 
Cluster of Jobs

• The initial directory for each job can be 
specified as run_$(Process), and instead of 
submitting a single job, we use “Queue 600” to 
submit 600 jobs at once 

• The $(Process) macro will be expanded to the 
process number for each job in the cluster (0 - 
599), so we’ll have “run_0”, “run_1”, … 
“run_599” directories

• All the input/output files will be in different 
directories!
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Submit Description File for a BIG 
Cluster of Jobs

# Example condor_submit input file that defines
# a cluster of 600 jobs with different directories
Universe   = vanilla
Executable = my_job
Log        = my_job.log
Arguments  = -arg1 –arg2
Input      = my_job.stdin
Output     = my_job.stdout
Error      = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600       ·Creates job 3.0 … 3.599
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More $(Process)

• You can use $(Process) anywhere.
Universe   = vanilla
Executable = my_job
Log        = my_job.$(Process).log
Arguments  = -randomseed $(Process)
Input      = my_job.stdin
Output     = my_job.stdout
Error      = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600 ·Creates job 3.0 … 3.599
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Sharing a directory

• You don’t have to use separate directories.
• $(Cluster) will help distinguish runs

Universe   = vanilla
Executable = my_job
Arguments  = -randomseed $(Process)
Input      = my_job.input.$(Process)
Output     = my_job.stdout.$(Cluster).$(Process)
Error      = my_job.stderr.$(Cluster).$(Process)
Log        = my_job.$(Cluster).$(Process).log
Queue 600



OSG School São Paulo 2010 

Job Priorities

• Are some of the jobs in your sweep more 
interesting than others?

• condor_prio lets you set the job priority
− Priority relative to your jobs, not other peoples

− Priority can be any integer

• Can be set in submit file:
− Priority = 14
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What if you have LOTS of jobs?

• Set system limits to be high:
− Each job requires a shadow process

− Each shadow requires file descriptors and sockets

− Each shadow requires ports/sockets

• Each condor_schedd limits max number of jobs 
running
− Default is 200

− Configurable: can be quite high (2000+)

• Consider multiple submit hosts
− You can submit jobs from multiple computers

− Immediate increase in scalability & complexity

• We constantly strive to improve scalability
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Advanced Trickery

• You submit 10 parameter sweeps
• You have five classes of parameters 

sweeps
− Call them A, B, C, D, E

• How can you look at the status of jobs 
that are part of Type B parameter 
sweeps?
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Advanced Trickery cont.
• In your job file:
+SweepType = “B”

• You can see this in your job ClassAd
condor_q –l

• You can show jobs of a certain type:
condor_q –constraint ‘SweepType == “B”’

• Very useful when you have a complex variety of 
jobs

• Try this during the exercises!
• Be careful with the quoting… 
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Time for more exercises!
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Questions?

• Questions? Comments?
• Feel free to ask me questions later:

Zach Miller <zmiller@cs.wisc.edu>
• Upcoming sessions

− 10:45– 12:30

 Intermediate Condor Usage

− 14:00 – 15:30

 Turning Science problems into HTC jobs

− 15:45 – 17:30

 Decomposing and running large jobs
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