
Intermediate Condor
Tuesday morning, 10:45am

Zach Miller <zmiller@cs.wisc.edu>

University of Wisconsin-Madison

OSG School São Paulo 2010

Before we begin…

• Any questions on the lectures or
exercises up to this point?

2

OSG School São Paulo 2010

How can my jobs access their
data?

OSG School São Paulo 2010

Access to Data in Condor

• Use shared filesystem if available
− We'll be using some data from an NFS share

• No shared filesystem?

−
Condor can transfer files

 Can automatically send back changed files

 Atomic transfer of multiple files

 Can be encrypted over the wire

 This is what we’ll do in the exercises

− Remote I/O Socket

− Standard Universe can use remote system calls (more on this later)

OSG School São Paulo 2010

Universe = vanilla

Executable = my_job

Log = my_job.log

ShouldTransferFiles = IF_NEEDED

Transfer_input_files = dataset$(Process), common.data

Queue 600

Condor File Transfer

• ShouldTransferFiles = YES
− Always transfer files to execution site

• ShouldTransferFiles = NO
− Rely on a shared filesystem

• ShouldTransferFiles = IF_NEEDED
− Will automatically transfer the files if the submit and execute machine are not in the same

FileSystemDomain

OSG School São Paulo 2010

Some of the machines in the Pool
do not have enough memory or
scratch disk space to run my job!

OSG School São Paulo 2010

Specify Requirements

• An expression (syntax similar to C or Java)
• Must evaluate to True for a match to be made

Universe = vanilla
Executable = my_job
Log = my_job.log
InitialDir = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Queue 600

OSG School São Paulo 2010

Specify Rank

• All matches which meet the requirements can
be sorted by preference with a Rank
expression.

• Higher the Rank, the better the match
Universe = vanilla
Executable = my_job
Log = my_job.log
Arguments = -arg1 –arg2
InitialDir = run_$(Process)
Requirements = Memory >= 256 && Disk > 10000
Rank = (KFLOPS*10000) + Memory
Queue 600

OSG School São Paulo 2010

My jobs run for 20 days…

• What happens when they get pre-
empted?

• How can I add fault tolerance to
my jobs?

OSG School São Paulo 2010

Condor’s Standard Universe
to the rescue!

• Condor can support various combinations of
features/environments in different “Universes”

• Different Universes provide different functionality
for your job:
− Vanilla: Run any serial job

− Standard: Support for transparent process checkpoint and

restart

OSG School São Paulo 2010

Process Checkpointing

• Condor’s process checkpointing mechanism
saves the entire state of a process into a
checkpoint file
− Memory, CPU, I/O, etc.

• The process can then be restarted from
right where it left off

• Typically no changes to your job’s source
code needed—however, your job must be
relinked with Condor’s Standard Universe
support library

OSG School São Paulo 2010

Relinking Your Job for Standard Universe

To do this, just place “condor_compile” in
front of the command you normally use to
link your job:
% condor_compile gcc -o myjob myjob.c

- OR -

% condor_compile f77 -o myjob filea.f
fileb.f

OSG School São Paulo 2010

Limitations of the
Standard Universe

• Condor’s checkpointing is not at the
kernel level. Thus in the Standard
Universe the job may not:
− fork()

− Use kernel threads

− Use some forms of IPC, such as pipes and shared memory

• Many typical scientific jobs are OK
• Must be same gcc as Condor was built

with

OSG School São Paulo 2010

When will Condor checkpoint your job?

• Periodically, if desired (for fault tolerance)
• When your job is preempted by a higher priority

job
• When your job is vacated because the execution

machine becomes busy
• When you explicitly run:

− condor_checkpoint

− condor_vacate

− condor_off

− condor_restart

OSG School São Paulo 2010

Remote System Calls

• I/O system calls are trapped and sent back to
submit machine

• Allows transparent migration across
administrative domains
− Checkpoint on machine A, restart on B

• No source code changes required
• Language independent
• Opportunities for application steering

OSG School São Paulo 2010

Job
I/O

Lib

Remote I/O

condor_schedd condor_startd

condor_shadow condor_starter

File

OSG School São Paulo 2010

Clusters and Processes

• If your submit file describes multiple jobs, we call
this a “cluster”

• Each cluster has a unique “cluster number”
• Each job in a cluster is called a “process”

− Process numbers always start at zero

• A Condor “Job ID” is the cluster number, a
period, and the process number (“20.1”)

• A cluster is allowed to have one or more
processes.
− There is always a cluster for every job

OSG School São Paulo 2010

Example Submit Description File
for a Cluster

Example submit description file that defines a
cluster of 2 jobs with separate working directories
Universe = vanilla
Executable = my_job
log = my_job.log
Arguments = -arg1 -arg2
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr
InitialDir = run_0
Queue Becomes job 2.0
InitialDir = run_1
Queue Becomes job 2.1

OSG School São Paulo 2010

% condor_submit my_job.submit-file

Submitting job(s).

2 job(s) submitted to cluster 2.

% condor_q

-- Submitter: perdita.cs.wisc.edu : <128.105.165.34:1027> :

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

 2.0 frieda 4/15 06:56 0+00:00:00 I 0 0.0 my_job

 2.1 frieda 4/15 06:56 0+00:00:00 I 0 0.0 my_job

2 jobs; 2 idle, 0 running, 0 held

Submitting The Job

OSG School São Paulo 2010

Submit Description File for a BIG
Cluster of Jobs

• The initial directory for each job can be
specified as run_$(Process), and instead of
submitting a single job, we use “Queue 600” to
submit 600 jobs at once

• The $(Process) macro will be expanded to the
process number for each job in the cluster (0 -
599), so we’ll have “run_0”, “run_1”, …
“run_599” directories

• All the input/output files will be in different
directories!

OSG School São Paulo 2010

Submit Description File for a BIG
Cluster of Jobs

Example condor_submit input file that defines
a cluster of 600 jobs with different directories
Universe = vanilla
Executable = my_job
Log = my_job.log
Arguments = -arg1 –arg2
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600 ·Creates job 3.0 … 3.599

OSG School São Paulo 2010

More $(Process)

• You can use $(Process) anywhere.
Universe = vanilla
Executable = my_job
Log = my_job.$(Process).log
Arguments = -randomseed $(Process)
Input = my_job.stdin
Output = my_job.stdout
Error = my_job.stderr

InitialDir = run_$(Process) ·run_0 … run_599
Queue 600 ·Creates job 3.0 … 3.599

OSG School São Paulo 2010

Sharing a directory

• You don’t have to use separate directories.
• $(Cluster) will help distinguish runs

Universe = vanilla
Executable = my_job
Arguments = -randomseed $(Process)
Input = my_job.input.$(Process)
Output = my_job.stdout.$(Cluster).$(Process)
Error = my_job.stderr.$(Cluster).$(Process)
Log = my_job.$(Cluster).$(Process).log
Queue 600

OSG School São Paulo 2010

Job Priorities

• Are some of the jobs in your sweep more
interesting than others?

• condor_prio lets you set the job priority
− Priority relative to your jobs, not other peoples

− Priority can be any integer

• Can be set in submit file:
− Priority = 14

OSG School São Paulo 2010

What if you have LOTS of jobs?

• Set system limits to be high:
− Each job requires a shadow process

− Each shadow requires file descriptors and sockets

− Each shadow requires ports/sockets

• Each condor_schedd limits max number of jobs
running
− Default is 200

− Configurable: can be quite high (2000+)

• Consider multiple submit hosts
− You can submit jobs from multiple computers

− Immediate increase in scalability & complexity

• We constantly strive to improve scalability

OSG School São Paulo 2010

Advanced Trickery

• You submit 10 parameter sweeps
• You have five classes of parameters

sweeps
− Call them A, B, C, D, E

• How can you look at the status of jobs
that are part of Type B parameter
sweeps?

OSG School São Paulo 2010

Advanced Trickery cont.
• In your job file:
+SweepType = “B”

• You can see this in your job ClassAd
condor_q –l

• You can show jobs of a certain type:
condor_q –constraint ‘SweepType == “B”’

• Very useful when you have a complex variety of
jobs

• Try this during the exercises!
• Be careful with the quoting…

OSG School São Paulo 2010

Time for more exercises!

28

OSG School São Paulo 2010

Questions?

• Questions? Comments?
• Feel free to ask me questions later:

Zach Miller <zmiller@cs.wisc.edu>
• Upcoming sessions

− 10:45– 12:30

 Intermediate Condor Usage

− 14:00 – 15:30

 Turning Science problems into HTC jobs

− 15:45 – 17:30

 Decomposing and running large jobs

29

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

