
Intermediate Condor: DAGMan
Tuesday, Dec 7, 10:45am

Zach Miller <zmiller@cs.wisc.edu>

University of Wisconsin-Madison

mailto:zmiller@cs.wisc.edu

OSG Summer School 2010

Before we begin…

• Any questions on the lectures or
exercises up to this point?

2

OSG Summer School 2010

DAGMan

• DAGMan allows you to specify the
dependencies between your Condor jobs,
so it can manage them automatically for
you.

• Example: “Don’t run job B until job A has
completed successfully.”

Directed

Acyclic

Graph

Manager

OSG Summer School 2010

What is a DAG?
• A DAG is the data structure used by

DAGMan to represent these
dependencies.

• Each job is a node in the DAG.

• Each node can have any number of
“parent” or “children” nodes – as
long as there are no loops!

A

B C

D

OK:

A

B C

Not OK:

OSG Summer School 2010

Defning a DAG

• A DAG is defined by a .dag file, listing each of its nodes
and their dependencies:

Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub

Parent A Child B C
Parent B C Child D

Job A

Job B Job C

Job D

OSG Summer School 2010

DAG Files….

• The complete DAG has five files

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

One DAG File: Four Submit Files:

Universe = Vanilla

Executable = analysis…

OSG Summer School 2010

Submitting a DAG

• To start your DAG, just run condor_submit_dag with
your .dag file, and Condor will start a personal DAGMan
process which to begin running your jobs:

% condor_submit_dag diamond.dag

• condor_submit_dag submits a Scheduler Universe job
with DAGMan as the executable.

• Thus the DAGMan daemon itself runs as a Condor job,
so you don’t have to baby-sit it.

OSG Summer School 2010

DAGMan

Running a DAG

• DAGMan acts as a scheduler, managing the
submission of your jobs to Condor based on the
DAG dependencies.

Condor

Job

Queue

B C

D

A

A

.dag

File

OSG Summer School 2010

DAGMan

Running a DAG (cont’d)

• DAGMan holds & submits jobs to the Condor
queue at the appropriate times.

Condor

Job

Queue

C

D

B

C

B

A

OSG Summer School 2010

DAGMan

Running a DAG (cont’d)

• In case of a job failure, DAGMan continues until it can no
longer make progress, and then creates a “rescue” file
with the current state of the DAG.

Condor

Job

Queue

X

D

A

B

Rescue

File

OSG Summer School 2010

DAGMan

Recovering a DAG

• Once the failed job is ready to be re-run, the
rescue file can be used to restore the prior state
of the DAG.

Condor

Job

Queue

C

D

A

B

Rescue

File

C

OSG Summer School 2010

DAGMan

Recovering a DAG (cont’d)

• Once that job completes, DAGMan will continue
the DAG as if the failure never happened.

Condor

Job

Queue

C

D

A

B

D

OSG Summer School 2010

DAGMan

Finishing a DAG

• Once the DAG is complete, the DAGMan job
itself is finished, and exits.

Condor

Job

Queue

C

D

A

B

OSG Summer School 2010

Example of a LIGO Inspiral DAG

OSG Summer School 2010

Use of Condor by the LIGO
Scientific Collaboration

• Condor handles 10’s of millions of jobs per year
running on the LDG, and up to 500k jobs per DAG.
• Condor standard universe check pointing widely
used, saving us from having to manage this.
• At Caltech, 30 million jobs processed using 22.8
million CPU hrs. on 1324 CPUs in last 30 months.
• For example, to search 1 yr. of data for GWs from
the inspiral of binary neutron star and black hole
systems takes ~2 million jobs, and months to run on
several thousand ~2.6 GHz nodes.

OSG Summer School 2010

DAGMan & Fancy Features

• DAGMan doesn’t have a lot of “fancy
features”
− No loops
− Not much assistance in writing very large

DAGs (script it yourself)

• Focus is on solid core
− Add the features people need in order to

run large DAGs well.
− People build systems on top of DAGMan

OSG Summer School 2010

DAGMan & Log Files
• For each job, Condor generates a log file
• DAGMan reads this log to see what has

happened
• If DAGMan dies (crash, power failure,

etc…)
− Condor will restart DAGMan
− DAGMan re-reads log file
− DAGMan knows everything it needs to know

OSG Summer School 2010

Advanced DAGMan Tricks

• Throttles and degenerative DAGs
• Sub-DAGs
• Pre and Post scripts: editing your DAG

OSG Summer School 2010

Throttles

• Failed nodes can be automatically retried
a configurable number of times
− Can retry N times
− Can retry N times, unless a node returns

specific exit code

• Throttles to control job submissions
− Max jobs submitted
− Max scripts running

OSG Summer School 2010

Degenerative DAG

• Submit DAG with:
− 200,000 nodes
− No dependencies

• Use DAGMan to throttle the jobs
− Condor is scalable, but it will have

problems if you submit 200,000 jobs
simultaneously

− DAGMan can help you get scalability even
if you don’t have dependencies

A1 A2 A3
…

OSG Summer School 2010

Sub-DAG
• Idea: any given DAG node can be another

DAG
− SUBDAG External Name DAG-file

• DAG node will not complete until recursive
DAG finishes,

• Interesting idea: A previous node could
generate this DAG node

• Why?
− Simpler DAG structure
− Implement a fixed-length loop
− Modify behavior on the fly

OSG Summer School 2010

Sub-DAG

A

B C

D

V W

Z

X Y

OSG Summer School 2010

DAGMan scripts

• DAGMan allows pre & post scripts
− Don’t have to be scripts: any executable
− Run before (pre) or after (post) job
− Run on the same computer you submitted from

• Syntax:
JOB A a.sub

SCRIPT PRE A before-script $JOB

SCRIPT POST A after-script $JOB $RETURN

OSG Summer School 2010

So What?
• Pre script can make decisions

− Where should my job run? (Particularly useful to
make job run in same place as last job.)

− Generate Sub-DAG
− Should I pass different arguments to the job?
− Lazy decision making

 Noop jobs

• Post script can change return value
− DAGMan decides job failed in non-zero return value
− Post-script can look at {error code, output files, etc}

and return zero or non-zero based on deeper
knowledge.

OSG Summer School 2010

Let’s try it out!

• Exercises with DAGMan.

25

OSG Summer School 2010

Questions?

• Questions? Comments?
• Feel free to ask me questions later:

Zach Miller <zmiller@cs.wisc.edu>
• Upcoming sessions

− Now – 12:30pm
 Hands-on exercises

− 2:15pm – 3:30pm
 Turning science problems into HTC jobs

− 3:45pm – 5:30pm
 Final Condor session

 26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

