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Before we begin…

• Any questions on the lectures or 
exercises up to this point?
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DAGMan

• DAGMan allows you to specify the 
dependencies between your Condor jobs, 
so it can manage them automatically for 
you.

• Example: “Don’t run job B until job A has 
completed successfully.”
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What is a DAG?
• A DAG is the data structure used by 

DAGMan to represent these 
dependencies.

• Each job is a node in the DAG.

• Each node can have any number of 
“parent” or “children” nodes – as 
long as there are no loops!
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Defning a DAG

• A DAG is defined by a .dag file, listing each of its nodes 
and their dependencies:

Job A a.sub
Job B b.sub
Job C c.sub
Job D d.sub

Parent A Child B C
Parent B C Child D

Job A

Job B Job C

Job D



OSG Summer School 2010

DAG Files….

• The complete DAG has five files

Job A a.sub

Job B b.sub

Job C c.sub

Job D d.sub

Parent A Child B C

Parent B C Child D

One DAG File: Four Submit Files:

Universe = Vanilla

Executable = analysis…
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Submitting a DAG

• To start your DAG, just run condor_submit_dag with 
your .dag file, and Condor will start a personal DAGMan 
process which to begin running your jobs:

% condor_submit_dag diamond.dag

• condor_submit_dag  submits a Scheduler Universe job 
with DAGMan as the executable.

• Thus the DAGMan daemon itself runs as a Condor job, 
so you don’t have to baby-sit it.
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DAGMan

Running a DAG

• DAGMan acts as a scheduler, managing the 
submission of your jobs to Condor based on the 
DAG dependencies.
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DAGMan

Running a DAG (cont’d)

• DAGMan holds & submits jobs to the Condor 
queue at the appropriate times.
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DAGMan

Running a DAG (cont’d)

• In case of a job failure, DAGMan continues until it can no 
longer make progress, and then creates a “rescue” file 
with the current state of the DAG.
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DAGMan

Recovering a DAG

• Once the failed job is ready to be re-run, the 
rescue file can be used to restore the prior state 
of the DAG.
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DAGMan

Recovering a DAG (cont’d)

• Once that job completes, DAGMan will continue 
the DAG as if the failure never happened.
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DAGMan

Finishing a DAG

• Once the DAG is complete, the DAGMan job 
itself is finished, and exits.
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Example of a LIGO Inspiral DAG
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Use of Condor by the LIGO 
Scientific Collaboration

• Condor handles 10’s of millions of jobs per year 
running on the LDG, and up to 500k jobs per DAG.
• Condor standard universe check pointing widely 
used, saving us from having to manage this.
• At Caltech, 30 million jobs processed using 22.8 
million CPU hrs. on 1324 CPUs in last 30 months.
• For example, to search 1 yr. of data for GWs from 
the inspiral of binary neutron star and black hole 
systems takes ~2 million jobs, and months to run on 
several thousand ~2.6 GHz nodes.



OSG Summer School 2010

DAGMan & Fancy Features

• DAGMan doesn’t have a lot of “fancy 
features”
− No loops
− Not much assistance in writing very large 

DAGs (script it yourself)

• Focus is on solid core
− Add the features people need in order to 

run large DAGs well.
− People build systems on top of DAGMan
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DAGMan & Log Files
• For each job, Condor generates a log file
• DAGMan reads this log to see what has 

happened
• If DAGMan dies (crash, power failure, 

etc…)
− Condor will restart DAGMan
− DAGMan re-reads log file
− DAGMan knows everything it needs to know



OSG Summer School 2010

Advanced DAGMan Tricks

• Throttles and degenerative DAGs
• Sub-DAGs
• Pre and Post scripts: editing your DAG
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Throttles

• Failed nodes can be automatically retried 
a configurable number of times
− Can retry N times
− Can retry N times, unless a node returns 

specific exit code

• Throttles to control job submissions
− Max jobs submitted
− Max scripts running
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Degenerative DAG

• Submit DAG with:
− 200,000 nodes
− No dependencies

• Use DAGMan to throttle the jobs
− Condor is scalable, but it will have 

problems if you submit 200,000 jobs 
simultaneously

− DAGMan can help you get scalability even 
if you don’t have dependencies

A1 A2 A3
…
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Sub-DAG
• Idea: any given DAG node can be another 

DAG
− SUBDAG External Name DAG-file

• DAG node will not complete until recursive 
DAG finishes,

• Interesting idea: A previous node could 
generate this DAG node

• Why?
− Simpler DAG structure
− Implement a fixed-length loop
− Modify behavior on the fly
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Sub-DAG
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DAGMan scripts

• DAGMan allows pre & post scripts
− Don’t have to be scripts: any executable
− Run before (pre) or after (post) job
− Run on the same computer you submitted from

• Syntax:
JOB A a.sub

SCRIPT PRE A before-script $JOB

SCRIPT POST A after-script $JOB $RETURN
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So What?
• Pre script can make decisions

− Where should my job run? (Particularly useful to 
make job run in same place as last job.)

− Generate Sub-DAG
− Should I pass different arguments to the job?
− Lazy decision making

 Noop jobs

• Post script can change return value
− DAGMan decides job failed in non-zero return value
− Post-script can look at {error code, output files, etc} 

and return zero or non-zero based on deeper 
knowledge.
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Let’s try it out!

• Exercises with DAGMan.

25
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Questions?

• Questions? Comments?
• Feel free to ask me questions later:

Zach Miller <zmiller@cs.wisc.edu>
• Upcoming sessions

− Now – 12:30pm
 Hands-on exercises

− 2:15pm – 3:30pm
 Turning science problems into HTC jobs

− 3:45pm – 5:30pm
 Final Condor session
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