
Turning science problems into HTC jobs
Tuesday, Dec 7

th

 2pm

Zach Miller

Condor Team

University of Wisconsin-Madison

Overview

You now know how to run jobs using
Condor, create basic workflows
using DAGMan, and how to run a
simple BLAST query. Let's put
these pieces together to tackle
larger problems.

This session will focus on how to
break down and process large
problems.

Review of Blast Example

• First, run blast locally

Login to a treinamentoXX machine

source /opt/workshop/zkm_exercises/blast/blast.sh

blastp -db /opt/workshop/zkm_exercises/blastdb/yeast.aa -query query1

(You did this in the morning... This is intended as a sanity check to make
sure your setup is still working)

Think about running your application
remotely

• What are the dependencies?
− Architecture
− OS // Linux Distro
− Shared libraries
− Input files
− Environment variables
− Scratch space
− Availble cpu …

OSG Summer School 2010

Running BLAST under Condor

• Did we get all dependencies?
• Are we sized correctly?
• How long will the job run?
• How much data will it produce?
• What kind of load are we putting on

various system resources?

OSG Summer School 2010

Sizing jobs for the grid

• If the job is too small, there's too much
overhead

• If the job is too big, there's potentially
for “badput”

• Badput is when a job runs for a while
but is preempted and the output thrown
away

• Rule of thumb: between 1 and 8 hours

OSG Summer School 2010

Other Considerations

• Besides how long a job will run, consider:
− Memory requirements
− Disk requirements
− Network I/O
− Consumable Licenses

• Try to identify all types of resources
needed.

OSG Summer School 2010

Hands-on Exercise

• Processing multiple sequences
• You get all queries in one file
• Blast will accept input files with multiple

queries
• Try running BLAST with the input file:
• /opt/workshop/zkm_exercises/examples/five_inputs

− How long does it take?

OSG Summer School 2010

Hands-on Exercise

• Now, let's try running a much larger input
/opt/workshop/zkm_exercises/examples/larger_input

• Note: it contains 6298 input files and will
take 20 minutes or more! (Go ahead and
submit it while I talk!)
− blastp -db yeast.aa -query large_input | grep

'^Query=' | nl

• Let's think about how we can do this
more quickly...

OSG Summer School 2010

BLAST Input

• BLAST Input can be split at sequence
boundaries

• Make a temporary directory in your home
dir, and copy the file
/opt/workshop/zkm_exercises/examples/five_inputs
into the temporary directory

• Edit five_inputs, and look at the structure
• With only 5, it could be split manually,

but...

OSG Summer School 2010

BLAST Input

• But with 6298 sequences, doing this
manually is out of the question.

• We need some sort of automation!
• Write a script to split apart the input file,

or copy
/opt/workshop/zkm_exercises/scripts/split_file.pl

• Use your script first on five_inputs to
create five input files:
− split_file.pl SMALL_TEST 1 < five_inputs

OSG Summer School 2010

Submitting to Condor

• But how to submit?
• You could create a submit file for each

new input file...
• Or you can use some fancy features in

Condor to use a template submit file.
• Copy

/opt/workshop/zkm_exercises/examples/blast_template.sub
to a temporary directory and examine it

OSG Summer School 2010

Submitting to Condor

• Now run:
− condor_submit blast_template.sub

• Watch it run with condor_q
• Examine the output (*.out)
• Count the results:

− grep '^Query=' *.out | nl

OSG Summer School 2010

Submitting to Condor

• Now do the same with a very large input:
− Create a temporary directory and cd to it
− cp /opt/workshop/zkm_exercises/examples/large_input .

− /opt/workshop/zkm_exercises/scripts/split_file.pl
BIG_TEST 315 < large_input

− cp /opt/workshop/zkm_exercises/examples/blast_template_2.sub .

− condor_submit blast_template_2.sub

• Again, watch it run:
− condor_q -dag
− condor_q -run

OSG Summer School 2010

Success?

• Problems with this approach:
− Not completely automated
− Requires editing template files
− How do you know when the workflow is

done?
− How do you know it was all successful?

OSG Summer School 2010

Managing your Large Run

• Using DAGMan can help here!
• DAGMan brings the ability to implement

several features:
− Final notification when all pieces are

complete
− Verification that all results are present
− Filtering or massaging the output into a final

form
− Throttling job submission for busy pools

OSG Summer School 2010

Managing your Large Run

• Once again, this can be automated
• Write a script that also generates a .dag

file and also the submit files. The DAG
will list all jobs but no relationships
between them. (see
/opt/workshop/zkm_exercises/examples/example.dag)

• Optionally, copy this script which does it
for you:
/opt/workshop/zkm_exercises/scripts/gen_dag.pl

OSG Summer School 2010

Managing your Large Run

• Try splitting the input into 20 pieces
• 6298 sequences / 20 == 315 per file
• gen_dag.pl LARGE_RUN 315 < large_input

− Look at what that script produced

• condor_submit_dag LARGE_RUN.dag
• Watch it run... How long is each piece

taking?
• How would you change these numbers

for an input of one million queries?

OSG Summer School 2010

Additional Work

• Modify your script to create a new node
in the DAG that is a child of all other
nodes

• Make a submit file for that node that runs
a script. What should that script do?
− Send email?
− Verify results?
− Concatenate results?
− Compress results?

• How many of those you can implement?

OSG Summer School 2010

Notes on DAGMan

• Different nodes in the DAG can be
different types of job: Vanilla, Grid, or
Local

• Make the final node LOCAL universe
(Check Condor Manual for details). You
want it to run locally to verify that all
results received are intact.

• Feel free to use and edit my script:
/opt/workshop/zkm_exercises/scripts/gen_dag_w_final.pl

OSG Summer School 2010

Additional Work

• Run the individual pieces on OSG using
Condor-G, instead of in the Vanilla
universe

• Write another script that does everything
using the pieces we just wrote:
− Splits the input
− Generates the DAG
− Submits the workflow
− Waits for completion (hint: condor_wait)
− Combines results

OSG Summer School 2010

Additional Work

• Try running five_inputs and large_input
against other databases. You'll need to:
− Run a single input as a test. How long did it

take?
− Estimate how many compute hours this will

take...
− Decide how to split up the input

appropriately
− Get access to enough available resources to

do this in a reasonable amount of time

OSG Summer School 2010

Questions?

• Questions about splitting, submitting,
automating, etc?

• Break Time, resume after lunch

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

