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Abstract—In the development of embedded systems,
Instruction-Set Simulators (ISS) plays an important role. When
using an ISS, simulation speed is a significant issue. In this
paper, we present experiments and comparison between several
dynamic translation techniques. In addition to an existing
technique which serves as a reference, we have developed a new
on-the-fly translation technique using the LLVM open-source
compiler infrastructure to enhance simulation speed. This
dynamic translation technique translates hot basic blocks of the
target instruction set into LLVM bitcode, then compiles LLVM
bitcode into host binary code using the LLVM Just-In-Time
(JIT) compiler. As the translation time using LLVM increases to
the detriment of the overall simulation speed, we also present a
mixed mode, where only the frequently executed chunks of code
are compiled. This translation technique was then extended
to support larger translation units compared to the previous.
Finally the paper ends with presentation of an orthogonal
solution to dispatch dynamic translation to a translation server
to take advantage of multi-processor hosts.

Index Terms—Instruction Set Simulation, Dynamic Binary
Translation, LLVM, Hot Path, Parallel Simulation

I. INTRODUCTION

Instruction-Set Simulators (ISS) are widely used tools for
studying new architectures or developing software closely
related to hardware such as operating systems or embedded
systems applications. An ISS is used to emulate the behavior
of a target processor on a simulation host machine to carry
out the computations that correspond to each instruction and
maintain correct state of the simulated target processor.

Because binary decoding is time-consuming and instruc-
tions are generally executed many times, simulation can be
accelerated by translating and caching on-the-fly the result
of the target decoding phase. This is called dynamic binary
translation. The decoded output, i.e. the translated code, can
be more or less optimized. Stronger optimization usually
implies longer translation time and there are trade-offs to
be made between translation time and execution time to
eventually obtain shorter overall simulation time.

We have used as code base the SimSoC open-source simula-
tor [1] that includes an ISS integrated as a SystemC module [2]
that uses Transaction Level Modeling for communications with
other simulation models, making it compatible with third-party
components developed using the same standards. This ISS has
several runtime modes, each using a different style of dynamic
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translation so that one can compare performance of each mode
on the same benchmarks.

The first mode, which is a base reference, translates the
target code, using a fast translation technique, into an inter-
mediate representation. This representation is executable in the
sense that it uses objects with associated methods, but it does
not consist of native code for the simulation host machine. As
it uses partial interpretation compiler techniques it can how-
ever reach simulation speed of over 50 Millions instructions
per second (Mips), including the MMU simulation. This ISS
is now standard mode of the SimSoC simulator.

To increase simulation speed, a second dynamic translation
mode was added, which uses the LLVM [3] library to translate
on the fly target code into LLVM, and then use the existing
LLVM Just-In-Time compiler to generate native code. The
obtained results are presented, showing increase in execution
speed.

The translation time from target code to LLVM, next from
LLVM to native, can become lengthy and ultimately defeat
the speed-up in execution time. Thus, we have implemented
a third mixed translation mode with a method to evaluate
and select only “hot path” code so that the LLVM translation
is not systematic, but only operates on such hot paths, the
remaining code being simulated with the cached translation.
This effectively provides overall faster simulation.

In the mixed mode above, translation to native code is
achieved on a basic block basis. We have also experimented
another mode with larger translation units, by dynamically
determining strongly coupled basic blocks in the control flow
graph. This technique provides better execution performance
but increases translation time, and also raises issues with
regards to interrupts handling.

Finally, in order to benefit from multi-core simulation
hosts, a distributed dynamic translation mechanism has been
experimented. In that mode, the native code translation is
achieved by a separate dynamic translation server, which runs
concurrently with the ISS on other processors.

This paper is structured as follows. Section II details some
close related work. Next, the new translation mode based
on LLVM is described in Section III. Then it details the
techniques used for dynamic binary translation in the different
modes. For each dynamic translation mode, tables are provided
with a selected set of benchmarks to compare the execution
timings and the simulation timings obtained in the different
mode, with comments on the trade offs made to maximize
overall simulation speed. Finally, Section V concludes the
paper.
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II. RELATED WORK

There has been much work done around Instruction-Set
Simulation. In order to reach high simulation speed, one must
describe the hardware with a higher level of abstraction than
the Cycle Accurate models achieved by the hardware design-
ers. Two popular instruments to describe higher abstraction
level of hardware models are SystemC [2] and Transaction
Level Modeling [4]–[7], widely used in industry and academia.
They provide flexible abstraction level to implement either Cy-
cle Accurate, Loosely (or Approximately) Timed, or timeless
models.

Rising the abstraction level is not the only way to achieve
higher speed. Optimization techniques related to compiler
technology and operating systems technology can be used
to implement fast simulators, whether or not they are based
on SystemC, and many efforts have been done to improve
Instruction-Set-Simulator (ISS) speed. Whereas the early ISS’s
used interpretive simulation [8], most recent ISS’s have used
some kind of dynamic cached translation to accelerate simu-
lation. Because it works on the real code at run time, dynamic
binary translation [9]–[14] has been favored.

In order to translate the target binary code into simulation
host code (typically Intel architecture), several techniques are
possible. The heart technology of SimIt [15] is a simulation
engine capable of mixed interpretive and compiled simulation.
While the simulator interprets target instructions it generates
profiling statistics for selecting frequently executed pages to
compile. When the execution count for a page exceeds a
predefined threshold, it generates C code equivalent to the
target operations performed, then this code is compiled with
GCC into a shared library which is loaded to replace the
interpreted code. This is indeed native host translation but as it
is generating C and invoking GCC, it creates a latency that is
only worthwhile for long simulations. To increase simulation
speed, it enables to distribute the compiling tasks involved in
binary translation to other processors. The Edinburgh High
Speed (EHS) simulator [16] has two simulation modes: one
is an interpretive mode and the other is a dynamic binary
translation (DBT) mode. In EHS simulator, the translation
units are Large Translation Units(LTU). LTU is a group of
basic blocks connected by control flow arcs, which may have
several entry and exit points. Each translation-unit is translated
into a C code function that simulates the target instructions.
The functions are compiled by GCC into a shared library
which is loaded by the dynamic linker. EHS simulator profiles
the target program’s execution in order to discover frequently
taken paths (hot paths) rather than to identify frequently
executed blocks.

Rapido [17] uses dynamic compilation with LLVM. Hot
basic blocks are grouped into regions when specified thresh-
old has been reached. A region is compiled into a LLVM
function which contains only a single entry and without other
restrictions. A region is the translation-unit of this simulator.
It means that a region may contain loops, and then interrupts
may not be checked for accurately. At compilation various
optimization passes are invoked by simulator that decides
which optimization pass to apply. Compared simulation speeds

of the interpreter and the translator for MIPS and CHILI shows
that the translator is up to 500 times faster for the longer
running benchmarks.

Identification of hot paths and strongly coupled blocks of
code is a technique that has been used in compilers or other
translators such as JCOD [18] or UQDBT [19].

QEMU [20] is a fast machine simulator which uses an
original portable dynamic translator. Each target instruction is
split into fewer simpler instructions called micro operations.
The micro operations have been pre-compiled offline into an
object file. The dynamic translation code generator invoked at
run-time generates and links complete host functions which
concatenates several micro operations.

The project llvm-qemu [21] uses components of the LLVM
compiler infrastructure to modify the QEMU dynamic transla-
tor to increase the performance of QEMU. Instead of directly
emitting code for the host architecture QEMU is running
on, the micro instructions are first translated to LLVM in-
termediate representation (IR), then a selection of LLVM’s
optimization functions are applied to the IR and the LLVM
JIT is used to generate code from the optimized IR for the host
architecture. This is similar to our work, but no performance
has been published as of this writing, making comparison
difficult.

In conclusion, to dynamically translate target code into host
code, one has to generate some representation and then com-
pile this representation into native code. This representation
can be C code as in SimIt or EHS, or it can be a lower
level representation, that can be more easily translated into
native code. Building a robust, efficient Just In Time compiler
represents a large and long term effort, which is why it was
decided to take advantage of LLVM.

III. DYNAMIC TRANSLATION WITH LLVM

A. Previous work

The SimSoC simulator as released in open source is imple-
menting three kinds of instruction simulation corresponding to
modes that the simulator can run in. It can simulate several
architectures, but in this paper the PowerPC architecture is
used as a reference.

The first mode, named DT0, is purely interpretive simula-
tion. Each instruction of the target program is fetched from
memory, decoded, and executed. This method is flexible and
easy to implement, but the simulation speed is slow as it
wastes a lot of time in decoding. It however provides a basis
from which one can fairly compare performance with other
simulation modes, for the same host machine and the same
application program.

The JIT-CCS simulator [12] introduced the basic technique
that is used in the DT1 mode: the code for simulating indi-
vidual simulation operations is coded in C or C++, manually
coded or generated (in our case generated C++ for ARM
V6 [22], and manually for PowerPC). The dynamic translator
then generates and caches a data structure with references to
these operations to re-execute them. This is a fast method
relatively easy to implement and provides a good basis to
compare performance enhancements.
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The third mode, named DT2, is dynamic cached translation
with optimization. In this mode each type and variant of an
instruction has a class structure corresponding to it. For exam-
ple, the PowerPC add instruction corresponds to the PPC_add
class, the stw instruction corresponding to PPC_stw class and
so on. These instruction instances store all information ob-
tained from the instruction decoding. Such information include
for example operand registers, target registers, immediate
values, and include a reference to the execution function. This
mode also uses a partial evaluation technique at decoding time
to possibly specialize each instruction into a more specialized
execution function. For example, the PowerPC add instruction
is specialized into two variants, one that does update the status
register, and one that does not.

DT2 mode shows the performance improvement obtained
with optimized dynamic translation compare to the simple
DT1. The benchmarks results in [23] shows that simulation
speed vary from 9.5 Mips in DT0 mode, to more than 30 Mips
in DT1, to reach close to over 70 Mips in DT2. In average
DT2 mode is between five to ten times faster than DT0 mode.

B. Dynamic compilation

Our work is about introducing new dynamic translation
modes based on LLVM and trying to take advantage of multi-
processor hosts.

LLVM is a common low-level toolchain infrastructure [3]
that has been designed to serve as intermediate representa-
tion in compilers suitable for complex optimizations. LLVM
consists in an abstract instruction set, each instruction having
well defined semantics. An LLVM program can be interpreted
directly using the LLVM interpreter, or compiled to machine
code. The code generation can be done either with a JIT
compiler or a batch compiling phase. It contains a complete
set of high-level compiler optimizations, ranging from simple
scalar simplifications to complex loop transformations.

In the DT3 mode, our translation-unit is a Basic Block, a
straight sequence of code with only one entry point and only
one exit, with a branch instruction at the end. That is to say,
all instructions from a basic block will certainly be executed
when it is entered. The idea is to compile each basic block into
a linear simulation function that does not contain any control
flow instruction, which allows fast translation.

Below is an example of a basic block of PowerPC instruc-
tions to be translated into an LLVM function:

addis r9, r0, 385
lwz r0, 1076 (r9)
or r1, r0, r0
bl 0xffffff70

To translate a basic block to LLVM, an LLVM function is
created, containing a single LLVM block entry. This LLVM
function has a parameter %proc that holds the processor
state. Then, for each instruction, a call to the corresponding
execution function is generated. These functions are stored into
a LLVM bitcode library, whose generation is explained below.
For example, the instructions addis and lwz are translated
to specialized llvm function calls to corresponding functions
addis_ra0 and lwz_raS. Each instruction is followed by

a function call to update the value of the PC register. The
status returned by an execution function tells whether or not
a branch has occurred.

Thus, the basic block above is translated to the following
LLVM function.

define void @bb_687 (%"struct.Proc"* %proc) {
entry:
%status = call i32 @addis_ra0(%"struct.

Proc"* %proc, i8 9, i32 385)
call void @inc_pc(%"struct.Proc"* %proc)
%status1 = call i32 @lwz_raS(%"struct.

Proc"* %proc, i8 0, i8 9, i32 1076)
call void @inc_pc(%"struct.Proc"* %proc)
%status2 = call i32 @or(%"struct.

Proc"* %proc, i8 0, i8 1, i8 0)
call void @inc_pc(%"struct.Proc"* %proc)
%status3 = call i32 @bl(%"struct.

Proc"* %proc, i32 -144)
call void @inc_pc_if_no_branch(i32 %status3,

%"struct.Proc"* %proc)
ret void

}

When a basic block has been constructed, one can use
LLVM optimization functions at will. In particular, the Al-
waysInline optimization is systematically called first so that all
the code of the execution functions is actually inlined, and thus
available for further optimizations. Next, other optimizations
can be accomplished. For example, LLVM will reduce the K
successive calls to inc_pc() inlined functions into a single
addition of K×4 to the PC when the PC variable is never read.
In general, after the AlwaysInline pass, the LLVM optimization
passes named GVNPass, InstructionCombiningPass, CFGSim-
plificationPass, and DeadStoreEliminationPass are applied.

After the LLVM optimization, the LLVM JIT compiler is
activated to compile LLVM bitcode into host binary code.
Eventually the translation cache is updated that the resulting
optimized native code is called instead of the DT2 simulation
function.

As it is much easier to write C++ code than LLVM bitcode,
to obtain the LLVM library, a library of C++ functions is
compiled into a LLVM library prior to simulation. All of the
instructions implemented for the PowerPC are gathered into
the C++ file ppc_llvm_lib.cpp. Using the llvm-g++
compiler, the LLVM bitcode file ppc_llvm_lib.bc is
obtained, and this file is dynamically loaded at simulation
start-up.

As an example, below is the C++ code implementing the
PowerPC add instruction:

extern "C" PseudoStatus ppc_add
(Proc &proc, u8 rt, u8 ra, u8 rb) {

const uint32_t a = proc.cpu.gpr[ra];
const uint32_t b = proc.cpu.gpr[rb];
proc.cpu.gpr[rt] = a + b;
return OK;

}

And here is the LLVM bitcode generated by llvm-g++ with
optimization (-O3):

define i32 @ppc_add(%"struct.Proc"* nocapture
%proc, i8 zeroext %rt, i8 zeroext %ra,

i8 zeroext %rb) nounwind {
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entry:
%0 = zext i8 %ra to i64;
%1 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %0;
%2 = load i32* %1, align 4;
%3 = zext i8 %rb to i64;
%4 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %3;
%5 = load i32* %4, align 4;
%6 = add i32 %5, %2;
%7 = zext i8 %rt to i64;
%8 = geteleptr inbounds %"struct.Proc"*

%proc, i64 0, i32 2, i32 4, i64 %7;
store i32 %6, i32* %8, align 4
ret i32 0

}

C. Profiling and compilation threshold

On average, a program spends a lot of time to execute
a small portion of its code. Since translation to LLVM is
costly, an idea to speed up simulation, already exploited in
JIT-CCS [12], is to only translate that small portion of code,
whereas the remaining code might only execute once or only
a few times and the extra time spent to generate the optimized
code would not pay off. Therefore one needs to find out the
frequently executed basic blocks. To that effect, a counter C is
added for each basic block, counting the number of times this
block has been executed. When the counter reaches a specified
threshold CT , the basic block is identified as a hot basic block.
Then, only hot basic blocks are compiled into LLVM bitcode.
This is optimistic, hoping that blocks executed frequently in
the past will also be executed frequently in the future, which
may not be true.

The value of the CT threshold is a run time parameter, so
one can study the effect of CT variations on performance.

IV. VALIDATION AND PERFORMANCES

The dynamic translation based on LLVM is implemented as
part of SimSoC. Some tests were already written to compare
dynamic translation performance in DT1 and DT2 mode. They
have been re-used to test the new dynamic compilation.

In this paper, we consider three benchmark programs that
we have written to test the performance of our simulator,
named “loop”, “matrix”, and “sorting”. The loop program
consists of simple loops and only a few basic blocks. The ma-
trix program performs a big block of simple matrix arithmetic.
And the sorting program executes several sorting algorithms
operating on tables stored in memory and consists of several
hundreds blocks, but all are small blocks of less than 10
instructions. We have cross-compiled these benchmarks for
PowerPC using different optimization options: a first time with
optimization (-O3) and a second time without (-O0). When
using no optimization, the compiler generates larger blocks,
which is useful to study influence of block size.

A. Simulation speed of the compiled code

The first results were obtained with the compilation thresh-
old CT set to 1. That is to say, all basic blocks that have been
executed at least twice were compiled (For technical reasons

DT3 with CT = 1 DT2
total time − compil. = simul. total.

loop-O0 30.958 s − 0.121 s = 30.837 s 85.457 s
loop-O3 8.633 s − 0.041 s = 8.592 s 18.661 s

matrix-O0 37.410 s − 0.544 s = 36.866 s 111.383 s
matrix-O3 6.032 s − 0.364 s = 5.668 s 11.629 s
sorting-O0 23.161 s − 5.588 s = 17.573 s 43.055 s
sorting-O3 7.020 s − 3.627 s = 3.393 s 7.004 s

total 113.214 s − 10.285 s = 102.929 s 291.109 s

TABLE I: compilation and simulation time

not detailed here, it is not possible to compile a basic block
before its first execution, and so CT = 0 is not feasible). The
results are presented in Table I.

For each benchmark, it shows in the first column the total
time, in the second column the time spent in compiling the
blocks, third the execution time of the compiled code, and last
the reference time of the DT2 mode.

One can see that the compiled code (DT3, using LLVM) is
more than twice as fast as the simply-translated code (DT2, not
using LLVM). Given that the six compiled benchmarks total
up to 11,199 millions of simulated instructions, the simulated
speed of the compiled code SC is 99 Mips on average, whereas
the speed of the DT2 mode ST was 38 Mips.

However, one may notice that the runtime compiler itself is
slow. Summing up the six benchmarks, 5,174 instructions in
619 basic blocks were compiled. Thus, on average, one can
compile only C = 503 instructions per seconds. As a result,
the total simulation time is smaller only for the sorting-O3
benchmark whose binary code is highly optimized. That is
the rationale to use a compilation threshold.

B. Speed of the runtime compiler

Regarding speed of the runtime compiler, Fig. 1 shows
the relation between the number of instructions and their
compilation time, using the same benchmarks as above. It
appears that a constant time of about 40 ms adds to the
compilation time of any instructions, and after that the compile
time is roughly linear with total instructions. Thus, we must
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speed

consider the appropriate numbers of compiled instructions due
to gradually increase of the compilation time.

C. Overall speed and best threshold value

Theoretically, we know that, if a binary instruction is exe-
cuted N times, then its cost using the DT2 mode is N ×S−1

T ,
where ST is the speed of the translated code, and its cost
using the DT3 mode is C−1 + N × S−1

C , where SC is the
speed of the compiled code and C the speed of the compiler.
Consequently, compiling an instruction is paying off only if:

N >
C−1

S−1
T − S−1

C

≈ 1/503

1/(38·106)− 1/(99·106)
≈ 123·103.

So, we expect that the best compilation threshold value CT
should be in the same order of magnitude as 123,000. For this
experiment, we test the same benchmarks with different values
of CT in DT3 mode, and we compare the overall simulation
speeds.

Fig. 2 shows that if the value of CT is small, most basic
blocks counters exceed the threshold, thus much time is spent
compiling basic blocks which are not really “hot blocks”;
the compile time is significant and consequently the overall
simulation speed may lower than DT2 mode. When increasing
the compilation threshold, less blocks get compiled and the
simulation speed is going up, above the DT2 speed. However,
when the value of CT is too large, the number of compiled
blocks decreases towards none. An infinite value of CT means
that any basic block counter can never exceed the threshold,
and the whole simulation is done using the intermediate
representation of the DT2 mode.

The users should run the simulations with an optimized
value of CT , so that the simulation speed will reach its peak.
According to Fig. 2, the best value is around 30,000. Using this
value, our new DT3 mode is 63.4% faster than the previous
DT2 mode. However, there are significant differences: the DT3
mode is more interesting for programs with long execution but
short binary code, or at least short hot sections. For example,
the DT3 mode is not interesting for the loop benchmark
because their hot path are too short that there are no key
improvements both for 1,000 and 300,000 as the basic block
threshold. But, if one does iterations during a longer time,

DT3 with heat DT2
total time − compil. = simul. total.

loop-O0 31.228 s − 0.129 s = 31.209 s 85.457 s
loop-O3 8.625 s − 0.043 s = 8.582 s 18.661 s

matrix-O0 37.506 s − 0.456 s = 37.050 s 111.383 s
matrix-O3 5.956 s − 0.234 s = 5.722 s 11.629 s
sorting-O0 19.901 s − 3.013 s = 16.888 s 43.055 s
sorting-O3 4.628 s − 1.328 s = 3.300 s 7.004 s

total 107.844 s − 5.203 s = 102.641 s 291.109 s

TABLE II: compilation with heat

(e.g., 100 fold iterations than before), then the DT3 mode
becomes advantageous.

D. Using weight for the threshold

For the results displayed above, we used a simple counter to
select the hot blocks, ignoring block size. However compiling
large blocks has a better pay-off. So, we introduced a notion of
heat to measure the heat of a hot block, and compile only the
hottest blocks. The heat is a compound of frequency and block
size, so that either very large blocks with a few executions
or smaller blocks with a larger number of executions get
compiled.

The measurements obtained show that we can improve
performance again by selecting hot blocks with this method.

The threshold maximizing performance is reached with a
heat of 20,000 instead of the former 30,000 counter value.
We obtain a performance improvement compared to the mere
frequency counter, and a performance gain compared to the
DT2 mode.

E. Compiling with Macro-blocks

Another way to improve performance is to compile larger
blocks than simple basic blocks. The method consists then in
identifying strongly connected basic blocks, such as embedded
loops. To that end, we need to profile, from the exit of a
basic block, which are the following target basic blocks, and
recursively find which target basic blocks are most frequently
executed.

This profiling method leads to identifying frequent
paths [19] across basic blocks, in particular to find strongly
connected basic blocks such as generated by compilers for
embedded loops.

When a frequent path is identified, one can construct a larger
translation unit [16], named a macro-block that gathers all
these basic blocks into a single unit, and compile then in a
new macro-block.

To construct a macro-block start from a hot basic block, in
addition to the basic block counter C, we introduce an edge
counter EC. An Edge is a directed pair that denotes control
flow from one basic block to its successor block. For example,
the edge e from basic block a to basic block b is denoted:
e = (a → b). The corresponding edge counter EC measures
the execution times from a to b. If the counter EC reaches
another specified threshold ET , then the successor block b
should make up a macro-block. Let BB be the set of all basic
blocks and E be the set of all possible edges. The set of hot
successor blocks is defined as:
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DT3 with Macro-block DT3
total time − compil. = simul. total.

loop-O0 23.225 s − 0.071 s = 23.154 s 31.254 s
loop-O3 4.072 s − 0.014 s = 4.058 s 8.561 s

matrix-O0 32.726 s − 0.440 s = 32.286 s 37.454 s
matrix-O3 3.744 s − 0.146 s = 3.598 s 5.884 s
sorting-O0 15.609 s − 2.071 s = 13.538 s 19.533 s
sorting-O3 2.444 s − 0.268 s = 2.176 s 3.856 s

total 81.820 s − 3.010 s = 78.810 s 106.542 s

TABLE III: Simulation with Macro-blocks

HotSucc(a) = {b ∈ BB|∃e ∈ E • e = (a → b) ∧ EC ≥
ET}

From the hot basic block hbb and its edge counters, we only
choose the hot successor blocks and construct our next set of
hot blocks. We repeat this as follows:

HotSet(0) = {hbb}
HotSet(1) = {x ∈ BB|∀y ∈ HotSet(0) •x ∈ HotSucc(y)}
HotSet(2) = {x ∈ BB|∀y ∈ HotSet(1) •x ∈ HotSucc(y)}
. . .
HotSet(n) = {x ∈ BB|∀y ∈ HotSet(n − 1) • x ∈
HotSucc(y)}

The final set of hot blocks derived from hbb will construct
the macro-block set by performing the union of all the hot
blocks sets:

MacroBlock(hbb) =
⋃n

i=1 HotSet(i)
The upper value of n is the smallest n such that:
HotSet(n) ⊆

⋃n
i=1 HotSet(i)

This ensures that the set includes all the hot blocks; for
each new hot set constructed at step n, there exists some
blocks in this hot set n that are not contain in previous n− 1
sets. However, the algorithm for finding MacroBlock(hbb)
is expensive to apply. Practically, MacroBlock(hbb) builds
gradually based on a recursive algorithm which adds basic
blocks that have not been traversed and their edge counters
reach ET .

Table III indicates DT3-Macro-block (the macro-block
based simulation techniques) to be 23.2% faster than DT3
(basic block based dynamic binary translation) in average.
In particular, performance improvement in O3 version bench-
marks are much better due to that hot paths in highly-
optimized codes are much compacter as a whole.

F. Using Multiprocessor Host for Parallel Compilation

A method to obtain better results and still lower the
threshold consists in parallelizing simulation and compilation,
using a multi-processor host. In that case, ideally, each block
could be compiled in parallell of the DT2 simulation on
a separate processor, replaced with the compiled block for
further execution, and the result would expectedly be much
faster.

However, this method introduces a synchronization over-
head between the simulator and the compiler, that slows down
the process, and we wanted to evaluate this as well. We have
implemented to that effect a multi-threaded dynamic compiling
simulator. The standard DT2 simulation runs in one thread
and a compile server compiles blocks in one or more separate
thread.

DT3 with server DT3
total time − compil. = simul. total.

loop-O0 31.262 s − 0.253 s = 31.009 s 31.254 s
loop-O3 8.761 s − 0.048 s = 8.713 s 8.561 s

matrix-O0 38.666 s − 1.698 s = 36.968 s 37.454 s
matrix-O3 6.284 s − 0.568 s = 5.716 s 5.884 s
sorting-O0 21.197 s − 2.873 s = 18.324 s 19.533 s
sorting-O3 4.332 s − 0.657 s = 3.675 s 3.856 s

total 110.706 s − 6.109 s = 104.597 s 106.542 s

TABLE IV: Simulation with compile server

We choose to minimize synchronization between the two
threads. The candidate blocks for compiling (those who exceed
the threshold) are put into a compile queue that is not
concurrently accessed. At regular intervals, the duration of
which is a runtime parameter, a synchronization occurs, the
simulation thread dispatches one block from the queue to the
server and fetches the compiled block from previous cycle, if
any.

Table IV displays the result of the benchmarks applied
compile server technique.

Although performance of compile server is a little less than
DT3, we believe this may be improved by larger benchmarks.
Furthermore, the heat threshold can be lower in larger bench-
marks.

V. CONCLUSION

In this paper we presented a new dynamic translation modes
within the SimSoC simulator based on LLVM. This approach
compiles target instructions into LLVM bitcode, followed by
several optimization passes invoked, ending with a call to the
LLVM Just In Time compiler to generate native code. We have
tested six benchmark programs on this simulation mode, and
the results demonstrate that the execution time is faster than
the non native translation mode.

However, as the translation time increases to the detriment
of the overall simulation time, we have implemented a mixed
mode to selectively compile only frequently executed code,
over a threshold T. This mixed mode yields better results.

To further accelerate simulation, it is necessary to decrease
the value of that threshold. For that purpose, we have explored
two orthogonal alternatives, one to compile larger units of
code, called macro blocks, and one to distribute dynamic
translation to multi-processors through a compile server.

Our future work will continue in same direction to further
decrease the threshold. We think it is possible although the
gains will not be as significant.
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