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Abstract in the presence of unreliable components and networks.

These challenges motivated the development of reusable
Communication is a critical concern in any scalablgeneral-purpose communications systems. Surprisingly,
distributed data processing system. While a numhéere has not been a systematic evaluation of such com-
of communications frameworks have been proposedntunication frameworks. We address this limitation in
the past, an evaluation of these approaches from thies paper. We also recognize that there are many good
perspective of their features and performance is missiidpas and features in existing frameworks, but there isn’t
In this paper, we address this gap. We also presangingle system that provides a comprehensive set of de-
Transactional Message Buses (TMBs), which buikirable features. Thus, we introduce a new communi-
on ideas proposed in previous frameworks, but brimgtion framework called a Transactional Message Bus,
together a set of features that are desirable in a singleTMB. Table 1 compares the TMB’s feature set with
communication layer to build systems that need to debht of popular communication frameworks, including
with aspects such as node failures and stragglers. Rpache ActiveMQ [2] (a message broker implementing
TMB architecture is highly modular, and allows differerthe Java Message Service [20]), the Spread Toolkit [30]
components implementing features like persistence gadvirtually synchronous messaging framework), Apache
recovery, network transparency, and high availability tafka [4] (a distributed, partitioned message logging
be combined freely, while still presenting exactly thservice), Akka [34] (a Java-based toolkit for building
same interface with the same well-defined semantics andssage-driven distributed applications), Amazon Simple
guarantees regarding ordering to clients. We comp&®eeue Service [1] (a cloud-based persistent queue ser-
TMBs with existing approaches, consider a numbeice), and ZeroMQ [23] (a lightweight embedded broker-
of different implementations of TMBs, and preserftee messaging library). None of these systems have the
empirical experimental results. The TMB source code ésitireensemble of features presentin a TMB.

available under the Apache open source license@gps: The second contribution of this paper is to cleanly de-
/'1'gi thub. cont apache/ i ncubat or - qui ckst ep/ fine the semantics of TMBs (see Section 3). TMBs are
tree/master/third party/tnb. transactionalin that the sending and receiving of asyn-
chronous messages are ACID transactions with guaran-
1 Introduction teed delivery, data persistence and recovery support, and

a consistent, deterministic set of semantics for addrgssin

A crucial component of any scalable distributed systemagd ordering messages based on the well-known model of
a communication fabric that allows different actors in thértual synchrony [7] with some extensions. Although the
system to communicate with each other. For examplelgssage-level transactions provided by the TMB do not
distributed search engine needs to send queries to difwtomatically translate to application-level ACID trans-
ent workers (each in charge of a distinct partition of trctions in a distributed system, consistent and reliable
data) in the system, and then collect these results. A dRessaging semantics can make it easier to implement
tributed data processing system needs a query coordinggeplication-level transactions.
to send sub-queries to different workers in the system andur last contribution is the design and evaluation of
aggregate results. a “pluggable” modular software architecture for TMBs

In early distributed systems, such communication wésat allows components providing transaction manage-
often ad-hoc and not cleanly abstracted into a framment, durable persistent storage for messages, and net-
work, which made programming and reasoning abowbrk transparency to be freely combined into a complete
concurrent behavior difficult and error prone, especiallyMB stack. Inspired by the observation that communica-



Feature [TMB|ActiveMQ[Spread ToolkiKafka  [Akka Amazon SQS [ZeroMQ)

Point-to-point Messaging Yes |Yes Yes Yes Yes Yes Yes
Group Messaging Yes |Yes Yes Limited A |Limited* No Limited*
Guaranteed Delivery Yes |Optional |Yes Yes No Yes No
Persistent Queues Yes |Optional |No Yes Optional Yes No
Queryable Queues Yes |Yes No Yes No No No
Virtual Synchrony Yes |Optionall |Yes No No No No
Robust to Client Failures Yes |Yes Partiak Yes Yes Yes No
Robust to Service Failures (highly availab Yes |Optionall |Yes Yes N/A Yes N/A
Tied Messages Yes |No No No No No No
Priority & Deadlines Yes |Yes No No Deadlines Onl{Deadlines OnljNo
Message Size Limit NongNone 100 KB Varies  |Varies 256 KB None

A Publish subscribe or “consumer group” that routes each messaggl® recipient only.
* Publish-Subscribe only.

O Virtual synchrony only available in single-broker or master-slave gonéition.

+ Messages can be lost if a client crashes during receive and latgereco

O Highly available only in multi-broker or failover configuration.

Table 1: Messaging Framework Feature Comparison

tion between workflows via persistent queues is a databasecesses requires all participants to have the same con-
problem [18], we have implemented these TMB compsistent view of group membership when the message is
nents using a variety of relational and NoSQL databasent and when it is delivered. Delivery atomicity requires
systems (SQLite, VoltDB, Zookeeper, and LevelDB). Wihat all of the recipients of a multicast message will even-
have also implemented our own lightweight “native” contually receive or (only if the sender fails) none do. Fi-
ponents at each level of the stack that do not dependrally, delivery ordering may be either causal or absolute.
any third-party database. A key contribution of this pap@ausal ordering merely requires that for any two mes-
is considering how a full-featured messaging framewoslages sent by the same sender to the same (or overlapping)
can be built from various transaction processing systemegeiver(s), the messages are received in the same order
and what implications different approaches to transactitirat they are sent (this corresponds to Lamport’s defini-
processing have for the reliability, performance, and-sctibn of the causal happens-before relation [24]). Abso-
ability of messaging. lute ordering extends this requirement by imposing a to-
tal order on the receipt of messages for all processes in a
group. By default, TMBs provide virtual synchrony with
2 Reated Work at least causal message ordering. TMB implementations
that are based on relational database management systems
One of the earliest abstraction for communication is tf@BMSs) also provide absolute ordering. TMBs also
remote procedure call [10] (RPC), which allows invokerovide mechanisms whereby applications can intention-
ing code on remote machines. More recent methods &lly violate causal ordering so that, for instance, higher-
clude Message Passing Interface (MPI) [19] to progra@hiority messages arrive before lower-priority ones.
distributed-memory systems, and CORBA [21, 36] to ac- Message-Oriened Middleware (MOM) is a major in-
cess “distributed objects.” These methods cover some, Bustry [13], with various products [1, 2, 22, 27, 28], and
not all, features in TMBs. Notably, the notion of reliabilstandards like the Java Message Service [20]. MOM sys-
ity of RPC has been addressed by systems like ISIS [)ms provide an asynchronous messaging service for co-
which introduces the “virtually synchronous” executionperating applications. The MOM manages a queue of in-
model that is the basis for the TMB’s semantics. To easeming messages on behalf of each client, and the acts of
application programming, reliability and consistency-fegending (enqueueing) and receiving (dequeueing) a mes-
tures have been added to CORBA [29] —the TMB is bassdge are decoupled and asynchronous. The basic MOM
on a similar design philosophy. model has some limitations that have inspired extensions
Virtual synchrony provides distributed processes the ib integrate messaging with distributed ACID transac-
lusion of a serial, synchronous sequence of events thans [26, 33] and to integrate enforcement of logical con-
occur in the same order for every process. The key @#ions on message delivery into the MOM itself [32]. A
pects of virtual synchrony are address expansion, and kiey focus in this body of work is to “push down” features
livery atomicity and order [7]. Address expansion meatike at-least-once message delivery, deterministic erder
that sending a multicast message to a named groupmaf, and failure recovery to the communications layer to



make it easier to engineer distributed applications. Sys-The server-side loop blocks until a message is avail-

tems like Horus [35] have even made such functionaligle, then proceeds to search its local partition of the data

“pluggable” so that applications can select for themselvasd send results back to the client that made the request.

which features they need from the messaging layer. \®ending and receiving a message are decoupled and asyn-

have taken many cues from this body of work in devethronous, so clients and servers don’'t have to wait for

oping the TMB, which also provides point-to-point andach other, but the guaranteed reliable delivery and ab-

group-oriented messaging that we have integrated watinact addressing provided by the TMB means that our ap-

strong reliability, consistency, and ordering guarangeesplication code doesn’t need to worry about lost messages

detailed in Section 3. or retry loops. Thus, writing the application becomes sim-
A big inspiration for the TMB was work realizing thatpler given the TMB abstraction.

message queues are themselves transaction-processing

DBMSs [18]. Some MOM advocates countered thatexis->  TMB API

ing DBMS products were too “heavyweight” and slow for

messaging applications [5]. However, as we show in thige calls in the TMB API are as follows:

paper, modern DBMSs are more than up to the challengeoonnect () /Di sconnect (): Connects a “client”

The integration of transaction processing (TP) monitors ; o - some actor using the TMB) to the bus so it can
and DBMSs also lead researchers to realize that to buil tart sending and receiving messages, and permanently
a truly reliable TP system requires a persistent, recoveryisconnects it, respectively. Ti@annect () call re-

able system for request queues [6]. Reliable queueing, .5 5 ynique ID that the client uses to identify itself
of requests has been integrated into commercial DBMSg a1l other AP calls.

products as part of a service-oriented database archit.quegi sterd i ent AsSender ()/
ture [11]. TMBs owe much to lessons learned from per- Regi st er O i ent AsRecei ver () : Informs

sistent queues and generalize the concept to many dify,o T\ that a client is capable of sending or receiving
ferent styles of asynchronous communication suitable fora certain type of message. TMBs support sending
diverse applicatiop domains. TMBs also includg built-in any number of different application-defined classes of
features such as tied messages, group messaging, and Vifzasqages, which is discussed in detail in Section 3.4.

tual synchrony which are crucial for modern distributeg Send() : Send a message to one or more other clients

applications; thus, making writing distributed applica- ot the TMB. The arguments to this call include the mes-
tions with TMB much easier. sage itself (tagged with a type identifier) and an ad-
dress which specifies recipients (addressing is detailed

3 TMB Semantics in Section 3.5.1). Other optional arguments allow a
sender to use additional messaging features that are de-

In this section, we develop the TMB semantics including Scribed in Section 3.7. _ _
reliable and consistent message delivery. o Receive(): Receive pending messages. This
method is available in both a blocking version that waits

until at least 1 message is available and a non-blocking
31 Example version that returns immediately if no messages are

To illustrate the TMB API, consider a simple distributed Pending for a client. These methods can be used to
search application. This application consists of several€Celvé messages one at a time, or to get multiple mes-
servers, each of which contains a different partition of S2ges in a batch. ,
some text data. Clients can search the data by sendirfy 88! €t eMessages() : Erase one or more received

request to each server and collecting all of their respgnsednessages from the TMB. By defaulRecei ve()
using the following TMB pseudo-code: does not erase messages as they are received, so that

if a client fails or experiences some error, it can re-

sear ch(keyword) : cover and not lose any messages. An explicit call to

for server in search_servers:

t mb. Send(server, SearchRequest (keywor d)) Del et eMessages() can be issued when a client has
responses = tnb. Recei ve() finished processing a message and no longer needs the
return concat enat e(responses) TMB to retain it.

e Cancel Messages() : Cancel a previously sent mes-

The servers run the following message-driven loop: sage, preventing any client from receiving it in the fu-

| oop: ture. This call can be made by the client that originally
request = tmb. Receive() sent a messa ; ;
T . ge, or by any of several clients that receive
mat ches = find request.keyword in | ocal _data LT . A
tnmb. Send(r equest . sender, the message. Cancellation is discussed in detail in Sec-
Sear chResponse( mat ches)) tion 3.7.3.



Every TMB API call is implemented as an ACID transSear chResponse as message type 1. A client connect-
action on the TMB's state (note that this does NOT autimg to the TMB for the first time has the following start-
matically mean that applications running on the TMB axg procedure (the server’s procedure is the same, with the
transactional, but makes it easier to reason about conenessage types reversed):
rency and ordering). Below, we discuss the semantics of

these transactions. ny_id = tnb. Connect () .
tnb. Regi sterd i ent AsSender (ny_id, 0) # Request

tnb. Regi sterCl i ent AsReceiver(ny_id, 1) # Response

3.3 Clients

A client is an abstract entity that sends and receives m8s5  Sending M essages

sages using a TMB. Clients may be independent threads

in a parallel program, independent processes running i core purpose of the TMB is to deliver messages re-
separate machines in a distributed setting, or some otf@ply, but asynchronously. Asynchronous delivery has

application-specific entity (for example, nodes in a grapHOSitive implications for the performance and scalability

oriented processing model like Bulk-Synchronous Par&f TMBS, since clients generally do not need to wait for

lel). A client registers itself with the TMB by calling ea}ch other, as well as fqr availability, since senders can
Connect (), which returns a globally unique identifiestill send messages to clients that have temporarily failed
that the client uses to identify itself for any other call t8" @re “lagging” (processing messages slowly).

the TMB API. To send a message, a client callsnd(), supply-

A TMB “remembers” a client and retains any metadatB9 the message (including its type identifier) and an ad-
and pending messages until that client explicitly discofitess that specifies one or more clients to receive the mes-
nects by invoking thedi sconnect () API call. This Sage (addressing is described in Section 3.5.1). The TMB
means that even if a client fails and later recovers (for ipbecks that the client is connected and registered as a
stance as a result of crash or hardware failure), no m&ghder of the specified message type, and that each ex-
sages are lost, and other active clients may still receRA€itly specified recipient is registered as a receivene t
messages that the client sent before failing, as well as sEMfsage type. If the attempted send operation violates
messages which a failed client can receive once it recéY of these constraints, the transaction is aborted and an

even though clients may be unreliable. if the checks are successful, then a copy of the message

(plus some additional metadata, including the client ID of
the sender and the timestamp at which the message was
34 Messages sent) is pushed on each receiverigueof incoming mes-
Messages are the basic unit of communication betwegyes. As with other operations, pushing a message on a
clients. There are no restrictions on the content of megient/receiver queue is an ACID transaction. Indeed, each
sages. A message is simply an arbitrary sequence of byjethe four ACID properties is important to the correctness
that are opaque to the TMB itself. This abstraction abf the TMB implementation: enqueueing a message must
lows virtually any serializable data structure to be a mese atomicso that no partial, garbled, or misordered mes-
sage, including text strings, flat programming languaggages appeatpnsistenso that clients always see a valid
variables and structures, or any of several popular intgieue state and that messages appear in the correct order
operable formats for structured or semi-structured dafsee Section 3.7 for details on orderingplatedso that
such as JSON, XML, or Protocol Buffers. multiple concurrent senders and the receiver itself do not
Applications may use a TMB to send many differerihterfere with each other when enqueueing or dequeueing
“types” of messages, and different clients may be capahbiessages, amlrableso that once a message is sent it is
of sending or receiving only certain types of messagefmiaranteed to eventually be received by a client so long as
Each message has a “message type” identifier that is sphat client (or a replacement that is brought up for it after
ified by the sender. Clients can register as senders ordadailure) continues to receive messages.
ceivers for a particular message type, and the TMB en-
forces the pol_icy .th.at a c!ient may only send a messag%c_g_l Addressing Modes
a type for which it is registered as a sender, and that any
explicitly-specified recipients of a message must be regls-TMB provides two ways of specifying which clients
tered as a receiver of the type. These tests are perforrekduld receive a message. The firseiglicit address-
immediately as part of th8end() transaction, aborting ing, where a sender simply specifies a list of unique client
and returning an error code to the sender if the check fallSs that should receive the message. A client may know
Let us say that our distributed search applicatidhese client IDs as a result of out-of-band communication,
defines Sear chRequest as message type 0 andr as a result of previous communication using the TMB



(recall that the ID of the client that sent a message is papieues when they are received as part of the same trans-
vided to each client that receives it). To validate an eaetion. However, this approach can cause problems for
plicit address, the TMB checks that each specified cliesstme applications when the client fails. Consider receiv-
is connected and, if so, if it is registered as a receiveriofy and immediately deleting a message from the TMB’s
the message’s type. durable store as soon as a client receives it. Next, assume
The second mode of addressingriplicit, where the that the client fails before it can actually process the mes-
sender simply requests that a message be delivered tosage. Later, when the failed client restarts and is ready to
client that is capable of receiving it. If no connectetkceive messages, it will simply start processing new mes-
clients are capable of receiving the message, then an esages. The message(s) that it received, but did not process
code is returned to the sender, otherwise the send transegore the failure event, will seem to have “disappeared”.
tion proceeds as normal using the set of receivers for fileus, a client that fails can cause a violation of the dura-
message type as its list of recipients. bility and guaranteed message delivery properties.
Both modes of addressing allow for more than one re-To address this problem, receiving and deleting mes-
cipient to be specified for a message. If the sender spesgiges areseparateoperations in a TMBRecei ve() is
fies that a message shouldtiveadcastthen a copy of the a read-only transaction that retrieves a message from the
message is enqueued for every recipient. If the messagaqipropriate queue, but leaves the message in-place. Once
non-broadcast, then a single client is chosen from the aetlient has processed a received message and handled
of possible recipients to receive the message. it in the appropriate, application-specific way (including
Combining implicit addressing and broadcast allowgossibly sending out responses or other additional TMB
clients in our distributed search example to “discover” afdessages), it then makes a separate explicit call using the
send a search request to all servers, as follows: Del et eMessages() API. This second call triggers a
separate transaction that actually erases the message from
status = trmb. Send(ANY, BROADCAST, the queue. A client that makes multipRecei ve()
Sear chRequest (keyword)) - . .
if status == NORECEl VERS: calls without deleting messages will see the same mes-
return {enpty} sages again, thus ensuring at-least-once delivery of mes-
The combination of implicit addressing and broadcaztoc> SVen when clients fails.  TMBs (_)ptlonally_a_llow
. . oo ssages to be deleted as they are received (admitting the
also enables publish-subscribe style messagingina T . o
by using a different message type ID for each Channel_femomaly.dl_scussed above for apphpanons that can tolerate
it), but this is not the default behavior.
Let us say that our distributed search application re-
3.6 Receiving M essages quires 100% recall, but servers sometimes suffer tempo-

) ) ) rary outages. We can make the application robust to such
Each client that is connected to a TMB instance has a P&fitages by writing the server’s main loop as:

sistent, transactionally-consistent queue of incoming-mtlaoo )
sagesRecei ve() observes a consistent snapshot of thergdueSt t mb. Recei ve()

gueue and retrieves messages from it. In order to amormat ches = find request.keyword in |ocal _data

tize the cost of accessing the queue, a client may choosemb. Send(request. sender, SearchResponse(mat ches))

to receive a batch of messages all at once. Both blocking - Del et eMessage(request);

and non-blocking versions ®ecei ve() are provided.  Now, if a server fails after callindRecei ve(), but

A client that operates a purely message-driven main lopgfore callingSend(), it will reenter the loop when

(like the server in our example) would prefer the blocking recovers, receive the request again, and proceed nor-
version, since it has nothing to do without any messagesally. Note that there is a small window where the
and waiting for the blocking call to return is more efficiergerver could fail after callin@end( ) , but before calling

than polling the non-blocking version. On the other hanDe| et eMessages() , in which case the server would

a client may not wish to block waiting for messages whilgo its local search and send a response again. A client-
none are available, instead performing some other usefupplied request ID can be added to the messages so that
work. In that case, the client can use the non-blockirgients can discard such duplicate responses, achieving
version that returns immediately if no incoming messagegactly-once semantics even in the presence of failures.
are currently queued.

3.7 Additional Messaging Features

3.6.1 Deleting Messages Thus far, we have treated messages as opaque, aside from
When and how messages are removed from queues ishagir type. In this section we develop some additional, but
important consideration for the reliability of an applicaeptional, features of messages that can make TMBs more
tion that uses a TMB. We could remove messages frarseful in various application settings.



3.7.1 Deadlines& Priority Levels 3.7.3 Message Cancellation & Tied M essages

In some cases (especially in interactive applications),Ted messages are a highly effective technique for deal-
sender may only want a message to be received withiing with latency variability in large-scale interactive e
certain time frame. In our distributed search example,Sérvices [14]. A major source of variable latency in large-
some servers are lagging, then it may be preferable to $eale distributed services is queueing delay on servers. A
turn partial results to the user within a limited time framiéed message is a request which is sent to multiple servers
rather than to wait for all the servers to respond [14]. Aftéfat are able to process it. A tied message includes in-
that window has passed, any outstanding requests arefegnation about each of the target servers. Clients issue
solete, and processing them is a waste of time on senitéed request to two or more servers that are capable of
that were already lagging. servicing it. Once a copy of the message reaches the head
In order to avoid doing redundant work, which com@f one of the servers’ queue, that server will “cancel” the
pounds the problem of lagging, an optional expiratidRessage for its peers, preventing them from receiving it
time can be specified with th8end() call. In the cor- and doing unnecessary redundant work, while still allow-
respondingRecei ve() call, each message’s expiratiofnd the client to benefit from having its request serviced
time is checked against the timestamp of the transactifif the lowest-latency server.
and expired messages are silently discarded. Expiratiordied or cancellable messages are fully supported by
times also affect the order in which messages are receifédBs. When a message is sent, the sender may choose to
by clients. Messages that expire sooner are received B@ke it cancellable. For such messages, the TMB creates
fore those that expire later (messages that have no e)apq:ancellation “token” that has information to locate and
ration time are received last). Thus, the TMB prioritizedelete copies of the message in each recipient's queue.
messages with an earlier deadline. The cancellation token is attached to each copy of the
Applications can also exercise explicit control over tH8€SSage, and a copy is also returned to the sender. The
relative ordering of messages by having senders spe@@pder may cancel a message at any time using the to-
a priority level for each message. Message queues ken. Similarly, receiving clients that receive a cancdéab
ordered in descending order of priority, with ties brokeW€ssage can cancel it, thus preventing their peers from
using the earliest-deadline-first policy described abave.receiving itin the future.
our example application, we might have multiple classesNote that there is a small window of time during which
of clients sharing the same service. Some are interactf/& Possible for a client to receive a message that has
and highly sensitive to latency, while others are doing dtist been cancelled. This situation is not an error for the
fline batch-processing. We can assign a higher priority 1B, as cancellation is treated as an idempotent opera-
the interactive requests so that they are serviced firdt, wien- Nevertheless, programmers using a TMB should be
the long-running batch jobs proceeding when the servaéiéare that tied messages do not guarantee only-once de-

priority levels. ing the same message do not cause an application-level

error (e.g. by doing operations that are idempotent and
adding the original message id to the response message,
3.7.2 Ordered Delivery & Streaming ensuring that operations that modify a shared application

) ) state are idempotent or, failing that, coordinating using a
The features described above affect the order in whigRriputed locking or commit protocol).

messages are received, which requires treating the queUfiey messages can improve the tail-latency of searches
of incoming messages for each client as a priority qUeyeqr example. Suppose each partition of the data is repli-
Still, unless a sender explicitly and intentionally cha®19@ 3eq across multiple servers. The client can broadcast a

the order in which messages it sends to a particular clieit,ce|japle message to multiple servers for each replica
should be received by specifying different priorities Qfg 4o

deadlllnes, it is useful for a sequence _of messages frgggrch(keymrd):
a particular sender to a particular receiver to be received or server_set in partitions:
in the same order as they were sent, i.e. to provide virtual token = tmb. Send(server_set,
synchrony with causal ordering [7]. This semantics fa- cB:ARONéEﬁi;LE
ciIita_tes _streaming of data via multiple dis_crete messages EXPI RES(now + 100 ms),
making it easier to reason about messaging between con- Sear chRequest (keywor d))
current clients [9]. This functionality is easily achieved rspns = {} _
by using the send timestamp attached to each message t§°P unti! all received CR 100 ms:

. . L rspns = concatenate(rspns, tnb. Receive())
order messages by their send time when priority and deadny, cancel Message(t oken) # stop redundant wor k

line are the same. return rspns
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Figure 1: TMB Component Architecture

4.1 Modular TMB Architecture
The software architecture of a TMB implementation is di-

While the server code looks like:

| oop: . . . R
request = tnb. Recei ve() vided into thr?e tiers, as shown in Figure 1. At the heart of
t nb. Cancel Message(r equest) the TMB is a “Transaction/Bus Management” component

match = find request. keyword in |ocal _data that implements the full TMB semantics described in Sec-
tmb. Send(request. sender, SearchResponse(match)) tion 3 and enforces the consistency guarantees described

The client benefits from having each request servicltere. Below the transaction manager is a durable storage
by the first available server, but we limit load on servef@mponent responsible for storing TMB state persistently
by canceling tied requests when a server starts procesdifig recovering after a crash or other failure. Finally,¢her

them, and after the client no longer wants more respondégt networking layer that allows TMB clients in different
processes running on different machines to share a TMB

. instance and communicate with each other.
3.8 Summary of Logical TMB Structure The components in each tier are abstracted to make

In this section we have developed the features and senfigm ‘pluggable.” For instance, if a TMB is only be-
tics of the Transactional Message Bus. Any TMB implddg used by clients on a single machine, there is no
mentation consists of a shared globally consistent stateNg€d for any networking component. Similarly, if there
well as per-client priority queues of incoming messagds.no requirement for long-term durability of messages,
The global state is the set of connected clients, and the Native TMB in-memory transaction manager can be
set of message types that each connected client is capdBRd without any persistent storage component as a high-
of sending and receiving. All transactions modifying theerformance in-process “pure memory” message bus.
global state have a serializable order. The per-clientprio
ity queues of incoming messages suppuoish(i.e. send), 4.2 Transaction/Bus Management Tier
reqd (i.e. receive), andelet(_e(explicit removal or cancel- For the bus-management core, we have implemented our
lation of messages) operations. Tieshanddeleteoper- oy cystom in-memory transaction manager, as well as
ations are atomic and serializable, and the read-@&y ,,qqable interfaces for the following four transactional
operation observes a consistent snapshot of the queuey iapase systems: SQLite, LevelDB, Zookeeper, and
\VoItDB. Our in-memory transaction manager can also be
4 TMB Implementations used as an in—mempry cach_e in front of thes_e database
systems, in effect using our high-performance in-memory
In this section we discuss our experiences implementitignsaction manager in combination with the durability
the TMB as a modular service. and recovery that is provided by these four systems.



421 Custom In-Memory Transaction M anager e client - Contains a row for each connected client.

Here we describe our custom in-memory transaction mansendable - Contains one row fpr each message type
ager, which can be combined with any of several optionssendable by each connected client.

for persistence and recovery, or used alone as a “p@réeceivable - This table has the same schema as the
memory” message bus. sendable table, but for receivable message types.

e message - Contains columns for a unique serial mes-
Data Structures The global set of connected clients is sage ID along with message contents and metadata.
represented by a hash table that maps unique client ID® tqueued_message - Contains one row with a foreign-
per-client records. The per-client records, in turn, ceinsi key reference to a row in theessage table for each
of a hash table of sendable message type IDs, a hash taueued incoming message for each client.
ble of receivable message type IDs, and a priority queue

of incoming messages (we have evaluated both max-h@aps | avelDB Transaction M anagement
and balanced binary tree-based priority queue implemen-

tations). There is also a secondary index that mapsigyelDB [16] is an embedded NoSQL key-value store.

ceivable message type IDs to client IDs to speed up esupplortsng get antljldelfateoperatrllons I(I)n |nd|v||(<jual d
resolution of implicit addresses. ey-value pairs, as well as iterators that allow seeking an

scanning over keys in order. Multiple reads can be issued

Concurrency Control  Our initial transaction manager2dainst the same consistent snapshot, and multiple write
design used well-known concurrency primitives to co@Perations can be combined into a single atomic batch.
trol access to shared data structures. We found that Y¥g have built a minimal bus manager on the snapshot iso-
overhead associated with latching can cause severe fiifon and atomic commit features present in LevelDB.

formance issues (especially when there are many acttf@ use five different types of keys and mapped data struc-

in a highly multi-threaded environment), so we designed4€S in LevelDB that correspond closely to the five tables

lock-free user space concurrency control mechanism tHg€d in the SQLite implementation.

we callHybridCC, which borrows heavily from the read-

copy-update (RCU) [25] paradigm, as well as rw-lock§2.4 Zookeeper Transaction Management
and reference-counting garbage collection. We omit d

Rbache Zookeeper [3] is a distributed NoSQL data store

tails of the HybridCC implementation and its tuning fof iy, sirong consistency guarantees. Zookeeper servers

multi-socket NUMA use cases here, but a full descriptiaf}q \;5ya1ly configured as an “ensemble”, with the service
is available in the extended technical report [12]. remaining available so long as a majority of the servers
The global hash-table of clients is protected by Hys yhe ansemble are up. Zookeeper servers synchronously
bridCC. Connect and disconnect transactions modify t,?) data changes to disk as part of all modifying opera-
hash-table, while all other transactions observe snap s, and a single Zookeeper server can be used without
isolation without blocking. Similarly, the per-client Has 5, onsemple if high availability in a cluster is not needed.

Eﬁbles of ssndable qnd r(_ec(;ewart])le rr:lf[esslage typﬁs astwell S‘Tﬁe Zookeeper data model is a tree of nodes not unlike
e secondary receiver index hash-table are all protecief,, entional filesystem, except that there is no distinc-

by HybridCC instances. tion between files and directories. Our Zookeeper-based

Each client's queue of incoming messages is pr|‘Fr'1plementation has a directory structure that is broadly

tected _by a simple mutex, which s locked whenever a¥nilar to the ordered key structure of the LevelDB im-
operation pugh_ read or deletg is per_formed on the plementation. The implementation of TMB transactions
queue. To efficiently support th? blocking version of ”\% also quite similar to the LevelDB implementation, but
Recei ve() call, aread operation that sees an empty o haq 1o handle and resolve anomalies that can arise

gf:leue relgabsles 'ti IOCE on the murt1ex, ancti. Wa':ﬁ cin a CRBim multiple reads in a transaction observing different
ition variable. subsequemiush operation that en- . .cione'of the data tree.

gueues a message, which satisfies the minimum priority
of the waitingread operation, signals the condition vari-

able, thereby waking the reader. 4.2.5 VoltDB Transactions
_ . VoltDB [37] is a main-memory distributed SQL DBMS.
4.22 SQLite Transactions The TMB implementation for VoItDB is similar to that of

SQLite [31] is a popular embedded SQL database libré®@Lite, with many of the same tables and transactions.
that supports multi-statement ACID transactions. TMRoltDB allows stored procedures to be written in Java, so
transactions are implemented as SQL queries over siagewere able to embed some TMB logic directly in the
stored in five tables, with secondary indices to speed quégtabase that in other cases required implementation in
evaluation when appropriate: the TMB client library. To take advantage of VoltDB'’s



ability to efficiently execute transactions on different-parunning the TMB'’s transaction manager, and all client ma-
titions of data in parallel, we denormalize the messagkines connect to the server. If the server crashes, clients
contents and the metadata into tipeeued_message ta- must wait for it to become available again to continue
ble, which is then partitioned on the receiver ID attributenessaging (TMB calls will time out or fail with a net-
Stored procedures implementing Recei ve() andthe work error during this window, but clients can remain up
Del et eMessages() APIs are partitioned on client ID and TMB state will be restored exactly as it was upon re-
for parallel execution, as is a fast-path versiosehd() covery). We note that a number of cloud-hosting services
for the common case of a single explicit recipient. offer hot restart for VMs that crash, very quickly bringing
up a replacement server connected to the same persistent
disk. Although this is not truly uninterrupted service, it
may give sufficiently high uptime for many applications.

In order for the TMB state to be persistent and recoverableThe other approach to the networking tier is to lever-
after failures, we require a storage component that logge the built-in network transparency of an existing dis-
transactions durably and allows us to reconstruct condidouted database (in our prototypes, we have experi-
tent TMB state after a failure or interruption. For each ¢fented with both Zookeeper and VoltDB). In this case,
the four third-party databases we developed a TMB irthe TMB library on clients communicates directly with
plementation that provides durable storage and recovégokeeper or VoltDB servers, and transaction manage-
of committed transactions. We also developed our owient is handled in the database itself. Zookeeper servers
minimal synchronous write-ahead log that can be usedai® typically configured as an “ensemble” consisting of
replay a TMB’s history and recover its state. Our nati&1 odd number of machines, with the overall system re-
write-ahead log is simple, and uses POSIX atomic IADaining available so long as a majority of the servers are

syscalls for writes and thfedat async() syscall to syn- Up and the network is not partitioned. VoltDB clusters
chronously flush log records when committing. have a user-tunable “K-safety” parameter, which causes

each patrtition of data to be replicated across K + 1 dif-
ferent servers in the cluster, with replicas distributed so
that any K servers can fail simultaneously and the clus-
By default, all TMB implementations synchronously fluster will remain fully available with all partitions online.
logs to disk when committing a transaction so that dat&is latter approach to networking has the advantage of
loss is never experienced in case of a crash. Some mgh availability with zero interruptions in the face of in-
plementations do, however, allow logging to be asy#ividual server failures, although it may come at perfor-
chronous so that the operating system can buffer a nufance penalty since transactions must be applied at mul-
ber of log writes together before flushing them to diskple replicas instead of a single server. Operationalscost
potentially allowing both lower latency for log writes andireé also likely to be higher in this scenario, since multi-
higher overall messaging throughput, with the caveat tHd€ servers with uncorrelated failure domains must be kept
some of the most recent messages may be lost in the eVeAfing. An experimental evaluation comparing both net-
of a crash. Asynchronous logging is optional for our n&working approaches is contained in Section 5.4.

tive write-ahead log, as well as the LevelDB and VoltDB

implementations of the TMB. By default, we use syn- .

chronous logging for the strongest possible durability, b@ ~ EXperiments

we do leave asynchronous logging as an option for users

that are willing to accept the trade-off for increased péhp this section we present empirical results comparing the
formance. We conduct experiments in Section 5 comp&@rious TMB implementations.

ing both styles of logging.

4.3 Persistence & Recovery Tier

4.3.1 Synchronousvs. Asynchronous L ogging

5.1 Stress-Test Benchmark

4.4 Networking Tier . .
To evaluate the performance of different TMB imple-

Finally, we describe the networking tier, which is necesentations, we devised a stress-test throughput bench-
sary for TMB clients running on different machines tonark. This benchmark starts a configurable number of
transparently share a TMB and communicate with easénder and receiver threads, each of which connects to an
other. There are two different approaches that we ha®IB instance as a client. The sender threads repeatedly
evaluated in the networking tier. The first is a custosend messages as quickly as possible, randomly choos-
TMB network protocol that we developed on top of thimg one receiver for each. We measure the total aggregate
GRPC cross-platform RPC framework [17]. In this prahroughput across all receivers in messages per second.
tocol, there is a single TMB server that is responsible féve conducted experimental runs with each TMB imple-



mentation, varying the number of sender threads and mba&2  Distributed Search Application

suring the impact on throughput.
g P anp We also developed a sample distributed search applica-

We conducted experiments to measure both the intfag, \;sing the TMB whose structure follows the exam-
node and inter-node (i.e. scale-out) scalability of Oyfe hresented throughout Section 3, with the addition of a
TMB implementations. We benchmarked each TMB inkjhie term frequency-inverse document frequency (TF-
plementation on a multi-socket NUMA server with foufp ) ranking function. A client submits a set of keywords
Intel Xeon E7-4850 CPUs running at 2.0 GHz (each CRY; (a4t search, and servers scan documents and return a
has 10 cores and 20 hardware threads with 64 GB of fjf jis¢ yith frequency counts for each keyword in each
rectly attached memory), with a four-disk striped harq4iching document. The client then counts the total num-
ware RAID as persistent storage. ber of matching documents for each keyword to determine

For our first round of experiments, we set the affinitgach keyword’s inverse document frequency, and finally
mask of our benchmark executable so that it would run eanks all the matching documents according to TF-IDF.
only one CPU socket and access only local memory. Wewe ran four search servers (matching our application
then conducted another round of experiments where wsde configuration above), each containing partitions of a
used all four sockets to measure NUMA scalability. Whearge English plain text corpus with 44 partitions in total,
testing the Zookeeper and VoItDB implementations, tlgch approximately 100 MB in size. Each data partition
server process was run on the same machine. was replicated on two different servers, and we distributed

To measure inter-node performance, we configuredhg replicas so that each server contained a copy of 22 dif-
cluster of dedicated virtual machine instances in Goodf§ent partitions. We had a client submit a keyword search
Compute Engine [15]. We configured servers to run dRquest to one server for each partition. We then simulated
ther the standalone TMB network protocol server or tifeStraggler node by causing one of the servers to make four
underlying Zookeeper or VoItDB service with 8 XeorP@sses over the same data before responding. Finally, we
CPU cores at 2.3 GHz, 30 GB of RAM, and a 128 GBad the client submit tied messages to both servers for
SSD. When benchmarking the TMB network server, V\f@ch partition in an attempt to mitigate the performancg
used a single server. For experiments with Zookeep@iPact of the straggler (servers cancel a request for their
and VoltDB we used three servers, meaning that tR€€r when they begin working).

Zookeeper ensemble could tolerate the loss of one servefVe used the VoltDB-based TMB implementation for
and remain available, and we similarly configured VoltDBis experiment. Al results below use the stress-test
with a K-Safety factor of 1. We Conﬁgured a number chenChmark, except Section 5.6, which contains the results
“application” nodes to run the benchmark with 4 Xeoffr the distributed search application.

CPU cores and 15 GB of RAM. We conducted experimen-

tal runs with 1, 2, 4, 8, and 16 application nodes, varyi
the number of threads running on each.

We also sought to compare the performance bifgure 2 shows the relative performance of five TMB im-
the TMB against existing message-oriented middlewapgementations when running on a single CPU socket (10
specifically Apache ActiveMQ (a message broker for tte@res / 20 hyperthreads). Recall that these implementa-
Java Message Service) and the Spread Toolkit (a multidigns were described in Sections 4.2.1 through 4.2.5. In
distributed messaging service with virtual synchronyfrigure 2, the label “Native” indicates the use of the TMB
We ported our stress-test benchmark to ActiveMQ affttmemory transaction manager in combination with the
Spread, and ran it under the exact same cloud server cbMiB write-ahead log. The native log, LevelDB, and
figuration that we used to evaluate distributed TMB imMoltDB are all configured to use synchronous logging for
plementations (three 8-core servers running ActiveMiQe strongest possible durability.
brokers or Spread daemons, 1-16 quad-core applicatioifhe first finding from this experiment is that the Na-
nodes running client threads). ActiveMQ was configurdive, LevelDB, and VoltDB implementations vastly out-
to use replicated LevelDB storage for persistent queupsyform and out-scale the SQLite and Zookeeper imple-
with the three servers acting as a quorum with automatientations. Both LevelDB and VolItDB scale throughput
failover for high availability. The three Spread daemongell with additional threads before eventually leveling ou
were configured as a single “segment” with safe, and fullyhen the number of sender threads far exceeds the num-
atomic, multicast. Note that Spread doast support ber of hardware threads. The Native implementation is
durable message queues (i.e. messages can be lost if d@ebound and has flatter performance, but it should be
mons fail), so ActiveMQ and TMB are somewhat disadioted that it achieves the highest throughput when the
vantaged by their requirement to log messages durablynsmber of threads is equal to the number of physical CPU
this pure performance comparison. cores (10), and achieves throughput only 9.5% below Lev-

W3 s ngle-Node Per for mance
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elDB’s peak of 20318 messages/s when the numberaofd using the TMB in-memory transaction manager as a
threads is equal to the number of hardware threads (28che continued to boost performance.

\oltDB ultimately scales up to a higher peak throughput

when threads are _heaV|Iy oversubscribed tp cores. 54 Cluster ScaleOut

We also examined the performance impact of op-
tional asynchronous logging for the Native, LevelDBrigure 4 shows the results of our experiment using the
and VoltDB TMBs. All three achieved higher messagingMB network protocol server for communication in a
throughput, with the Native TMB hitting 5X higher peakjuster. The server uses the TMB in-memory transaction
throughput when the number of sender threads is equahi@nager, and uses LevelDB (with synchronous logging)
the number of CPU cores (10). for persistent storage We connected 1, 2, 4, 8, or 16

In Figure 3, we examine the performance impact of ugpplication nodes to the TMB, and measured throughput
ing the TMB in-memory transaction manager as a cachith the stress-test benchmark. This graph shows a simi-
as described in Section 4.2.1, using LevelDB as the uar relationship between the number of sender threads and
derlying storage engine. Using the custom TMB transdtie message bus throughput regardless of the number of
tion manager as an in-memory cache improves the sagplication nodes. This shows that messaging through-
ability of the LevelDB-based TMB considerably, regardput is effectively network-agnostic, with the TMB deliver-
less of whether synchronous logging is used. In the asymg the same throughput for a wide range of cluster sizes.
chronous case, the TMB cache eliminates the need for dihe data for 1 node and 16 nodes show throughput that
explicit snapshotting as well as any read contention, tie-slightly diminished relative to the other cluster sizes.
ducing the interaction with LevelDB to a series of smallhe 1 node case is limited by the load from heavily over-
point writes, with average throughput of up to 93764 mesubscribing threads to CPU cores on the application node,
sages/s with 180 sender threads. In the synchronous cetgle the 16 node case is limited by high CPU load and
the TMB cache allows the message bus to continue saablny open network connections on the server.
ing up to 63272 messages/s with 240 sender threads, Bigure 5 shows the results of a similar experiment for
55% improvement over sync logging without the cachethe distributed VoltDB TMB implementation. Recall from

We also tested the TMB in-memory cache with theection 4.4 that a distributed database like VoltDB allows
SQLite, Zookeeper, and VoltDB-based TMBs. The cacfier a different approach to networking, with clients com-
resulted in only a slight improvement for SQLite (call§unicating directly with VoItDB servers and transaction
would still lock to serialize transactions), and had littlexanagement handled in VoItDB itself. We ran VoltDB on
impact on VoltDB (this is to be expected, since VoltDB i#ree server nodes (a cluster with K-safety = 1). Once
already a main-memory database). The Zookeeper iagain, despite the different approach to the networking
plementation experienced a 3.3X improvement in peH®r, we see that messaging throughput scales in an effec-
throughput with the cache, although the highest throughely network-agnostic fashion, with throughput slightl
put achieved was still only 6685 messages/s. diminished when clients or servers are heavily loaded.

We also conducted tests using all four CPUs in our We also experimented with a variable number of
NUMA server, which we summarize here (a more conYoltDB servers @xmg the numper of application nodes at
plete discussion is available in the extended technical f3- Adding additional servers increases the average mes-
port [12]). We found that, for all persistent TMB imple-Sag¢€ throughput in the cluster for any number of sender

mentations, the throughput scale-up curve was very S"”_1We use LevelDB for the TMB Net Server’s persistent storaget a

ilar to the single-socket case (suggesting remote MemoRyed the best performance characteristics of the synchsapersis-
access is not a significant bottleneck relative to disk I/Qgnce options in the single-node experiments describeddtidBes.3.
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tributed Search Application

threads, with the difference more pronounced for a highsgrver failures, and can maintain high availability with

number of threads. We do note that the throughput scatero downtime if one server fails.

up from adding more VoItDB servers is less than linear These results show that the TMB design approach,

(for instance, with 384 sender threads, a configurationleferaging either a custom-built lightweight transaction

6 VoItDB servers achieved 27% higher throughput tham3anager and network protocol or a high-performance

servers, while 9 servers achieved 42% higher throughpufistributed DBMS, compares favorably with leading
Finally, we evaluated the Zookeeper TMB implemerpurpose-built MOM systems.

tation in the cluster environment. As with the single-

node case, performance was underwhelming. The hig%l:— -
est throughput was 4783 messages/s for 8 applicati |§ Distributed Search Results

nodes. Unlike the TMB network server and TMB Ofye ran our sample text search and ranking application us-
\oltDB, the relationship between threads and throughpHgy a cluster of four search servers each containing repli-
was not cluster-agnostic, with smaller clusters of applicgas of a large partitioned text data set as described in Sec-
tion nodes experiencing significantly lower throughput. tion 5.2. The results for this experiment are shown in Fig-
ure 7. We ran a full-text keyword search on the unloaded
5.5 Comparison With ActiveMQ & Spread servers, which completed in 3.66s. We th(_an simulate(_j a
straggler node, which caused the completion time to in-
Figure 6 shows the throughput of our stress-test benchease to 14.35 s. Finally, we enabled cancellable tied
mark using the TMB network server with LevelDB stormessages, which allowed the search to complete in 5.05 s
age and TMB on VoltDB vs. the ActiveMQ message bralespite the slow performance of the straggler node. This
ker and the Spread Toolkit. With 8 application nodes, Ademonstrates the effectiveness of tied messages in dealing
tiveMQ’s message throughput is in the range of 950 to 9@th lagging and unreliable components.
messages/s regardless of the number of sender threads.
Spread achieves its highest throughput when there are few .
threads running on each node (30205 message/s with dly Conclusions
a single sender and receiver thread on each VM), withthis paper, we have compared the features in a num-
performance diminishing due to contention as additionaér of existing communication frameworks, and designed
threads are added. In contrast, the two TMB implemesnew communication framework called the Transactional
tations’ throughput scales with additional threads, witlessage Bus that provides a combined richer set of fea-
throughput from 6.4X to 34X higher than ActiveMQ detures than existing approaches. We presented the seman-
pending on the number of threads. Either TMB impleics of the TMB, and designed a modular, pluggable multi-
mentation achieves higher throughput than Spread abtee software architecture for TMB implementations. We
64 sender threads (the number of cores in the cluster) amaye developed and evaluated a number of alternative
unlike Spread, the TMB stores messages durably. TMB implementations using this architecture, some of
Both the TMB network protocol server and TMB orwhich are “custom” and written from scratch and others
VoltDB have very similar throughput curves. The comwhich leverage the features of existing database systems.
parison is not entirely fair, however, as the TMB netAe also compared the performance of a TMB with the
work server uses only a single machine, while TMB gpopular messaging frameworks Apache ActiveMQ and
\VoltDB uses three. On the one hand, this means that opggpread. Our results show that TMBs achieve performance
ational costs for the TMB network server should be lowdar higher than ActiveMQ and competitive with Spread, as
On the other hand, TMB on VoltDB is more resilient tavell as a richer feature set than either.
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