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Abstract

Communication is a critical concern in any scalable
distributed data processing system. While a number
of communications frameworks have been proposed in
the past, an evaluation of these approaches from the
perspective of their features and performance is missing.
In this paper, we address this gap. We also present
Transactional Message Buses (TMBs), which build
on ideas proposed in previous frameworks, but bring
together a set of features that are desirable in a single
communication layer to build systems that need to deal
with aspects such as node failures and stragglers. The
TMB architecture is highly modular, and allows different
components implementing features like persistence and
recovery, network transparency, and high availability to
be combined freely, while still presenting exactly the
same interface with the same well-defined semantics and
guarantees regarding ordering to clients. We compare
TMBs with existing approaches, consider a number
of different implementations of TMBs, and present
empirical experimental results. The TMB source code is
available under the Apache open source license athttps:

//github.com/apache/incubator-quickstep/

tree/master/third_party/tmb.

1 Introduction

A crucial component of any scalable distributed system is
a communication fabric that allows different actors in the
system to communicate with each other. For example, a
distributed search engine needs to send queries to differ-
ent workers (each in charge of a distinct partition of the
data) in the system, and then collect these results. A dis-
tributed data processing system needs a query coordinator
to send sub-queries to different workers in the system and
aggregate results.

In early distributed systems, such communication was
often ad-hoc and not cleanly abstracted into a frame-
work, which made programming and reasoning about
concurrent behavior difficult and error prone, especially

in the presence of unreliable components and networks.
These challenges motivated the development of reusable
general-purpose communications systems. Surprisingly,
there has not been a systematic evaluation of such com-
munication frameworks. We address this limitation in
this paper. We also recognize that there are many good
ideas and features in existing frameworks, but there isn’t
a single system that provides a comprehensive set of de-
sirable features. Thus, we introduce a new communi-
cation framework called a Transactional Message Bus,
or TMB. Table 1 compares the TMB’s feature set with
that of popular communication frameworks, including
Apache ActiveMQ [2] (a message broker implementing
the Java Message Service [20]), the Spread Toolkit [30]
(a virtually synchronous messaging framework), Apache
Kafka [4] (a distributed, partitioned message logging
service), Akka [34] (a Java-based toolkit for building
message-driven distributed applications), Amazon Simple
Queue Service [1] (a cloud-based persistent queue ser-
vice), and ZeroMQ [23] (a lightweight embedded broker-
free messaging library). None of these systems have the
entireensemble of features present in a TMB.

The second contribution of this paper is to cleanly de-
fine the semantics of TMBs (see Section 3). TMBs are
transactionalin that the sending and receiving of asyn-
chronous messages are ACID transactions with guaran-
teed delivery, data persistence and recovery support, and
a consistent, deterministic set of semantics for addressing
and ordering messages based on the well-known model of
virtual synchrony [7] with some extensions. Although the
message-level transactions provided by the TMB do not
automatically translate to application-level ACID trans-
actions in a distributed system, consistent and reliable
messaging semantics can make it easier to implement
application-level transactions.

Our last contribution is the design and evaluation of
a “pluggable” modular software architecture for TMBs
that allows components providing transaction manage-
ment, durable persistent storage for messages, and net-
work transparency to be freely combined into a complete
TMB stack. Inspired by the observation that communica-
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Feature TMB ActiveMQ Spread ToolkitKafka Akka Amazon SQS ZeroMQ

Point-to-point Messaging Yes Yes Yes Yes Yes Yes Yes
Group Messaging Yes Yes Yes Limited▲ Limited* No Limited*
Guaranteed Delivery Yes Optional Yes Yes No Yes No
Persistent Queues Yes Optional No Yes Optional Yes No
Queryable Queues Yes Yes No Yes No No No
Virtual Synchrony Yes Optional✢ Yes No No No No
Robust to Client Failures Yes Yes Partial♦ Yes Yes Yes No
Robust to Service Failures (highly available)Yes Optional❍ Yes Yes N/A Yes N/A
Tied Messages Yes No No No No No No
Priority & Deadlines Yes Yes No No Deadlines OnlyDeadlines OnlyNo
Message Size Limit NoneNone 100 KB Varies Varies 256 KB None
▲ Publish subscribe or “consumer group” that routes each message to single recipient only.
* Publish-Subscribe only.
✢ Virtual synchrony only available in single-broker or master-slave configuration.
♦ Messages can be lost if a client crashes during receive and later recovers.
❍ Highly available only in multi-broker or failover configuration.

Table 1: Messaging Framework Feature Comparison

tion between workflows via persistent queues is a database
problem [18], we have implemented these TMB compo-
nents using a variety of relational and NoSQL database
systems (SQLite, VoltDB, Zookeeper, and LevelDB). We
have also implemented our own lightweight “native” com-
ponents at each level of the stack that do not depend on
any third-party database. A key contribution of this paper
is considering how a full-featured messaging framework
can be built from various transaction processing systems,
and what implications different approaches to transaction
processing have for the reliability, performance, and scal-
ability of messaging.

2 Related Work

One of the earliest abstraction for communication is the
remote procedure call [10] (RPC), which allows invok-
ing code on remote machines. More recent methods in-
clude Message Passing Interface (MPI) [19] to program
distributed-memory systems, and CORBA [21, 36] to ac-
cess “distributed objects.” These methods cover some, but
not all, features in TMBs. Notably, the notion of reliabil-
ity of RPC has been addressed by systems like ISIS [8],
which introduces the “virtually synchronous” execution
model that is the basis for the TMB’s semantics. To ease
application programming, reliability and consistency fea-
tures have been added to CORBA [29] – the TMB is based
on a similar design philosophy.

Virtual synchrony provides distributed processes the il-
lusion of a serial, synchronous sequence of events that
occur in the same order for every process. The key as-
pects of virtual synchrony are address expansion, and de-
livery atomicity and order [7]. Address expansion means
that sending a multicast message to a named group of

processes requires all participants to have the same con-
sistent view of group membership when the message is
sent and when it is delivered. Delivery atomicity requires
that all of the recipients of a multicast message will even-
tually receive or (only if the sender fails) none do. Fi-
nally, delivery ordering may be either causal or absolute.
Causal ordering merely requires that for any two mes-
sages sent by the same sender to the same (or overlapping)
receiver(s), the messages are received in the same order
that they are sent (this corresponds to Lamport’s defini-
tion of the causal happens-before relation [24]). Abso-
lute ordering extends this requirement by imposing a to-
tal order on the receipt of messages for all processes in a
group. By default, TMBs provide virtual synchrony with
at least causal message ordering. TMB implementations
that are based on relational database management systems
(DBMSs) also provide absolute ordering. TMBs also
provide mechanisms whereby applications can intention-
ally violate causal ordering so that, for instance, higher-
priority messages arrive before lower-priority ones.

Message-Oriened Middleware (MOM) is a major in-
dustry [13], with various products [1, 2, 22, 27, 28], and
standards like the Java Message Service [20]. MOM sys-
tems provide an asynchronous messaging service for co-
operating applications. The MOM manages a queue of in-
coming messages on behalf of each client, and the acts of
sending (enqueueing) and receiving (dequeueing) a mes-
sage are decoupled and asynchronous. The basic MOM
model has some limitations that have inspired extensions
to integrate messaging with distributed ACID transac-
tions [26, 33] and to integrate enforcement of logical con-
ditions on message delivery into the MOM itself [32]. A
key focus in this body of work is to “push down” features
like at-least-once message delivery, deterministic order-
ing, and failure recovery to the communications layer to
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make it easier to engineer distributed applications. Sys-
tems like Horus [35] have even made such functionality
“pluggable” so that applications can select for themselves
which features they need from the messaging layer. We
have taken many cues from this body of work in devel-
oping the TMB, which also provides point-to-point and
group-oriented messaging that we have integrated with
strong reliability, consistency, and ordering guaranteesas
detailed in Section 3.

A big inspiration for the TMB was work realizing that
message queues are themselves transaction-processing
DBMSs [18]. Some MOM advocates countered that exist-
ing DBMS products were too “heavyweight” and slow for
messaging applications [5]. However, as we show in this
paper, modern DBMSs are more than up to the challenge.

The integration of transaction processing (TP) monitors
and DBMSs also lead researchers to realize that to build
a truly reliable TP system requires a persistent, recover-
able system for request queues [6]. Reliable queueing
of requests has been integrated into commercial DBMS
products as part of a service-oriented database architec-
ture [11]. TMBs owe much to lessons learned from per-
sistent queues and generalize the concept to many dif-
ferent styles of asynchronous communication suitable for
diverse application domains. TMBs also include built-in
features such as tied messages, group messaging, and vir-
tual synchrony which are crucial for modern distributed
applications; thus, making writing distributed applica-
tions with TMB much easier.

3 TMB Semantics

In this section, we develop the TMB semantics including
reliable and consistent message delivery.

3.1 Example

To illustrate the TMB API, consider a simple distributed
search application. This application consists of several
servers, each of which contains a different partition of
some text data. Clients can search the data by sending a
request to each server and collecting all of their responses,
using the following TMB pseudo-code:

search(keyword):
for server in search_servers:
tmb.Send(server, SearchRequest(keyword))

responses = tmb.Receive()
return concatenate(responses)

The servers run the following message-driven loop:

loop:
request = tmb.Receive()
matches = find request.keyword in local_data
tmb.Send(request.sender,

SearchResponse(matches))

The server-side loop blocks until a message is avail-
able, then proceeds to search its local partition of the data,
and send results back to the client that made the request.
Sending and receiving a message are decoupled and asyn-
chronous, so clients and servers don’t have to wait for
each other, but the guaranteed reliable delivery and ab-
stract addressing provided by the TMB means that our ap-
plication code doesn’t need to worry about lost messages
or retry loops. Thus, writing the application becomes sim-
pler given the TMB abstraction.

3.2 TMB API

The calls in the TMB API are as follows:

• Connect()/Disconnect(): Connects a “client”
(i.e. some actor using the TMB) to the bus so it can
start sending and receiving messages, and permanently
disconnects it, respectively. TheConnect() call re-
turns a unique ID that the client uses to identify itself
to all other API calls.

• RegisterClientAsSender()/
RegisterClientAsReceiver(): Informs
the TMB that a client is capable of sending or receiving
a certain type of message. TMBs support sending
any number of different application-defined classes of
messages, which is discussed in detail in Section 3.4.

• Send(): Send a message to one or more other clients
of the TMB. The arguments to this call include the mes-
sage itself (tagged with a type identifier) and an ad-
dress which specifies recipients (addressing is detailed
in Section 3.5.1). Other optional arguments allow a
sender to use additional messaging features that are de-
scribed in Section 3.7.

• Receive(): Receive pending messages. This
method is available in both a blocking version that waits
until at least 1 message is available and a non-blocking
version that returns immediately if no messages are
pending for a client. These methods can be used to
receive messages one at a time, or to get multiple mes-
sages in a batch.

• DeleteMessages(): Erase one or more received
messages from the TMB. By default,Receive()
does not erase messages as they are received, so that
if a client fails or experiences some error, it can re-
cover and not lose any messages. An explicit call to
DeleteMessages() can be issued when a client has
finished processing a message and no longer needs the
TMB to retain it.

• CancelMessages(): Cancel a previously sent mes-
sage, preventing any client from receiving it in the fu-
ture. This call can be made by the client that originally
sent a message, or by any of several clients that receive
the message. Cancellation is discussed in detail in Sec-
tion 3.7.3.
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Every TMB API call is implemented as an ACID trans-
action on the TMB’s state (note that this does NOT auto-
matically mean that applications running on the TMB are
transactional, but makes it easier to reason about concur-
rency and ordering). Below, we discuss the semantics of
these transactions.

3.3 Clients
A client is an abstract entity that sends and receives mes-
sages using a TMB. Clients may be independent threads
in a parallel program, independent processes running on
separate machines in a distributed setting, or some other
application-specific entity (for example, nodes in a graph-
oriented processing model like Bulk-Synchronous Paral-
lel). A client registers itself with the TMB by calling
Connect(), which returns a globally unique identifier
that the client uses to identify itself for any other call to
the TMB API.

A TMB “remembers” a client and retains any metadata
and pending messages until that client explicitly discon-
nects by invoking theDisconnect() API call. This
means that even if a client fails and later recovers (for in-
stance as a result of crash or hardware failure), no mes-
sages are lost, and other active clients may still receive
messages that the client sent before failing, as well as send
messages which a failed client can receive once it recov-
ers. Thus the TMB provides highly available messaging
even though clients may be unreliable.

3.4 Messages
Messages are the basic unit of communication between
clients. There are no restrictions on the content of mes-
sages. A message is simply an arbitrary sequence of bytes
that are opaque to the TMB itself. This abstraction al-
lows virtually any serializable data structure to be a mes-
sage, including text strings, flat programming language
variables and structures, or any of several popular inter-
operable formats for structured or semi-structured data,
such as JSON, XML, or Protocol Buffers.

Applications may use a TMB to send many different
“types” of messages, and different clients may be capable
of sending or receiving only certain types of messages.
Each message has a “message type” identifier that is spec-
ified by the sender. Clients can register as senders or re-
ceivers for a particular message type, and the TMB en-
forces the policy that a client may only send a message of
a type for which it is registered as a sender, and that any
explicitly-specified recipients of a message must be regis-
tered as a receiver of the type. These tests are performed
immediately as part of theSend() transaction, aborting
and returning an error code to the sender if the check fails.

Let us say that our distributed search application
defines SearchRequest as message type 0 and

SearchResponse as message type 1. A client connect-
ing to the TMB for the first time has the following start-
up procedure (the server’s procedure is the same, with the
message types reversed):

my_id = tmb.Connect()
tmb.RegisterClientAsSender(my_id, 0) # Request
tmb.RegisterClientAsReceiver(my_id, 1) # Response

3.5 Sending Messages

The core purpose of the TMB is to deliver messages re-
liably, but asynchronously. Asynchronous delivery has
positive implications for the performance and scalability
of TMBs, since clients generally do not need to wait for
each other, as well as for availability, since senders can
still send messages to clients that have temporarily failed
or are “lagging” (processing messages slowly).

To send a message, a client callsSend(), supply-
ing the message (including its type identifier) and an ad-
dress that specifies one or more clients to receive the mes-
sage (addressing is described in Section 3.5.1). The TMB
checks that the client is connected and registered as a
sender of the specified message type, and that each ex-
plicitly specified recipient is registered as a receiver of the
message type. If the attempted send operation violates
any of these constraints, the transaction is aborted and an
error code is returned to the client. On the other hand,
if the checks are successful, then a copy of the message
(plus some additional metadata, including the client ID of
the sender and the timestamp at which the message was
sent) is pushed on each receiver’squeueof incoming mes-
sages. As with other operations, pushing a message on a
client/receiver queue is an ACID transaction. Indeed, each
of the four ACID properties is important to the correctness
of the TMB implementation: enqueueing a message must
beatomicso that no partial, garbled, or misordered mes-
sages appear,consistentso that clients always see a valid
queue state and that messages appear in the correct order
(see Section 3.7 for details on ordering),isolatedso that
multiple concurrent senders and the receiver itself do not
interfere with each other when enqueueing or dequeueing
messages, anddurableso that once a message is sent it is
guaranteed to eventually be received by a client so long as
that client (or a replacement that is brought up for it after
a failure) continues to receive messages.

3.5.1 Addressing Modes

A TMB provides two ways of specifying which clients
should receive a message. The first isexplicit address-
ing, where a sender simply specifies a list of unique client
IDs that should receive the message. A client may know
these client IDs as a result of out-of-band communication,
or as a result of previous communication using the TMB
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(recall that the ID of the client that sent a message is pro-
vided to each client that receives it). To validate an ex-
plicit address, the TMB checks that each specified client
is connected and, if so, if it is registered as a receiver of
the message’s type.

The second mode of addressing isimplicit, where the
sender simply requests that a message be delivered to any
client that is capable of receiving it. If no connected
clients are capable of receiving the message, then an error
code is returned to the sender, otherwise the send transac-
tion proceeds as normal using the set of receivers for the
message type as its list of recipients.

Both modes of addressing allow for more than one re-
cipient to be specified for a message. If the sender speci-
fies that a message should bebroadcast, then a copy of the
message is enqueued for every recipient. If the message is
non-broadcast, then a single client is chosen from the set
of possible recipients to receive the message.

Combining implicit addressing and broadcast allows
clients in our distributed search example to “discover” and
send a search request to all servers, as follows:

status = tmb.Send(ANY, BROADCAST,
SearchRequest(keyword))

if status == NORECEIVERS:
return {empty}

The combination of implicit addressing and broadcast
also enables publish-subscribe style messaging in a TMB
by using a different message type ID for each channel.

3.6 Receiving Messages

Each client that is connected to a TMB instance has a per-
sistent, transactionally-consistent queue of incoming mes-
sages.Receive() observes a consistent snapshot of the
queue and retrieves messages from it. In order to amor-
tize the cost of accessing the queue, a client may choose
to receive a batch of messages all at once. Both blocking
and non-blocking versions ofReceive() are provided.
A client that operates a purely message-driven main loop
(like the server in our example) would prefer the blocking
version, since it has nothing to do without any messages,
and waiting for the blocking call to return is more efficient
than polling the non-blocking version. On the other hand,
a client may not wish to block waiting for messages while
none are available, instead performing some other useful
work. In that case, the client can use the non-blocking
version that returns immediately if no incoming messages
are currently queued.

3.6.1 Deleting Messages

When and how messages are removed from queues is an
important consideration for the reliability of an applica-
tion that uses a TMB. We could remove messages from

queues when they are received as part of the same trans-
action. However, this approach can cause problems for
some applications when the client fails. Consider receiv-
ing and immediately deleting a message from the TMB’s
durable store as soon as a client receives it. Next, assume
that the client fails before it can actually process the mes-
sage. Later, when the failed client restarts and is ready to
receive messages, it will simply start processing new mes-
sages. The message(s) that it received, but did not process
before the failure event, will seem to have “disappeared”.
Thus, a client that fails can cause a violation of the dura-
bility and guaranteed message delivery properties.

To address this problem, receiving and deleting mes-
sages areseparateoperations in a TMB.Receive() is
a read-only transaction that retrieves a message from the
appropriate queue, but leaves the message in-place. Once
a client has processed a received message and handled
it in the appropriate, application-specific way (including
possibly sending out responses or other additional TMB
messages), it then makes a separate explicit call using the
DeleteMessages() API. This second call triggers a
separate transaction that actually erases the message from
the queue. A client that makes multipleReceive()
calls without deleting messages will see the same mes-
sages again, thus ensuring at-least-once delivery of mes-
sages even when clients fails. TMBs optionally allow
messages to be deleted as they are received (admitting the
anomaly discussed above for applications that can tolerate
it), but this is not the default behavior.

Let us say that our distributed search application re-
quires 100% recall, but servers sometimes suffer tempo-
rary outages. We can make the application robust to such
outages by writing the server’s main loop as:

loop:
request = tmb.Receive()
matches = find request.keyword in local_data
tmb.Send(request.sender, SearchResponse(matches))
tmb.DeleteMessage(request);

Now, if a server fails after callingReceive(), but
before callingSend(), it will reenter the loop when
it recovers, receive the request again, and proceed nor-
mally. Note that there is a small window where the
server could fail after callingSend(), but before calling
DeleteMessages(), in which case the server would
do its local search and send a response again. A client-
supplied request ID can be added to the messages so that
clients can discard such duplicate responses, achieving
exactly-once semantics even in the presence of failures.

3.7 Additional Messaging Features
Thus far, we have treated messages as opaque, aside from
their type. In this section we develop some additional, but
optional, features of messages that can make TMBs more
useful in various application settings.
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3.7.1 Deadlines & Priority Levels

In some cases (especially in interactive applications), a
sender may only want a message to be received within a
certain time frame. In our distributed search example, if
some servers are lagging, then it may be preferable to re-
turn partial results to the user within a limited time frame
rather than to wait for all the servers to respond [14]. After
that window has passed, any outstanding requests are ob-
solete, and processing them is a waste of time on servers
that were already lagging.

In order to avoid doing redundant work, which com-
pounds the problem of lagging, an optional expiration
time can be specified with theSend() call. In the cor-
respondingReceive() call, each message’s expiration
time is checked against the timestamp of the transaction,
and expired messages are silently discarded. Expiration
times also affect the order in which messages are received
by clients. Messages that expire sooner are received be-
fore those that expire later (messages that have no expi-
ration time are received last). Thus, the TMB prioritizes
messages with an earlier deadline.

Applications can also exercise explicit control over the
relative ordering of messages by having senders specify
a priority level for each message. Message queues are
ordered in descending order of priority, with ties broken
using the earliest-deadline-first policy described above.In
our example application, we might have multiple classes
of clients sharing the same service. Some are interactive
and highly sensitive to latency, while others are doing of-
fline batch-processing. We can assign a higher priority to
the interactive requests so that they are serviced first, with
the long-running batch jobs proceeding when the servers
are not busy. This approach generalizes to any number of
priority levels.

3.7.2 Ordered Delivery & Streaming

The features described above affect the order in which
messages are received, which requires treating the queue
of incoming messages for each client as a priority queue.
Still, unless a sender explicitly and intentionally changes
the order in which messages it sends to a particular client
should be received by specifying different priorities or
deadlines, it is useful for a sequence of messages from
a particular sender to a particular receiver to be received
in the same order as they were sent, i.e. to provide virtual
synchrony with causal ordering [7]. This semantics fa-
cilitates streaming of data via multiple discrete messages,
making it easier to reason about messaging between con-
current clients [9]. This functionality is easily achieved
by using the send timestamp attached to each message to
order messages by their send time when priority and dead-
line are the same.

3.7.3 Message Cancellation & Tied Messages

Tied messages are a highly effective technique for deal-
ing with latency variability in large-scale interactive web
services [14]. A major source of variable latency in large-
scale distributed services is queueing delay on servers. A
tied message is a request which is sent to multiple servers
that are able to process it. A tied message includes in-
formation about each of the target servers. Clients issue
a tied request to two or more servers that are capable of
servicing it. Once a copy of the message reaches the head
of one of the servers’ queue, that server will “cancel” the
message for its peers, preventing them from receiving it
and doing unnecessary redundant work, while still allow-
ing the client to benefit from having its request serviced
by the lowest-latency server.

Tied or cancellable messages are fully supported by
TMBs. When a message is sent, the sender may choose to
make it cancellable. For such messages, the TMB creates
a cancellation “token” that has information to locate and
delete copies of the message in each recipient’s queue.
The cancellation token is attached to each copy of the
message, and a copy is also returned to the sender. The
sender may cancel a message at any time using the to-
ken. Similarly, receiving clients that receive a cancellable
message can cancel it, thus preventing their peers from
receiving it in the future.

Note that there is a small window of time during which
it is possible for a client to receive a message that has
just been cancelled. This situation is not an error for the
TMB, as cancellation is treated as an idempotent opera-
tion. Nevertheless, programmers using a TMB should be
aware that tied messages do not guarantee only-once de-
livery and take steps to ensure that multiple clients receiv-
ing the same message do not cause an application-level
error (e.g. by doing operations that are idempotent and
adding the original message id to the response message,
ensuring that operations that modify a shared application
state are idempotent or, failing that, coordinating using a
distributed locking or commit protocol).

Tied messages can improve the tail-latency of searches
in our example. Suppose each partition of the data is repli-
cated across multiple servers. The client can broadcast a
cancellable message to multiple servers for each replica
set as:
search(keyword):

for server_set in partitions:
token = tmb.Send(server_set,

BROADCAST,
CANCELLABLE,
EXPIRES(now + 100 ms),
SearchRequest(keyword))

rspns = {}
loop until all received OR 100 ms:

rspns = concatenate(rspns, tmb.Receive())
tmb.CancelMessage(token) # stop redundant work
return rspns
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Figure 1: TMB Component Architecture

While the server code looks like:

loop:
request = tmb.Receive()
tmb.CancelMessage(request)
match = find request.keyword in local_data
tmb.Send(request.sender, SearchResponse(match))

The client benefits from having each request serviced
by the first available server, but we limit load on servers
by canceling tied requests when a server starts processing
them, and after the client no longer wants more responses.

3.8 Summary of Logical TMB Structure

In this section we have developed the features and seman-
tics of the Transactional Message Bus. Any TMB imple-
mentation consists of a shared globally consistent state, as
well as per-client priority queues of incoming messages.
The global state is the set of connected clients, and the
set of message types that each connected client is capable
of sending and receiving. All transactions modifying the
global state have a serializable order. The per-client prior-
ity queues of incoming messages supportpush(i.e. send),
read (i.e. receive), anddelete(explicit removal or cancel-
lation of messages) operations. Thepushanddeleteoper-
ations are atomic and serializable, and the read-onlyread
operation observes a consistent snapshot of the queue.

4 TMB Implementations
In this section we discuss our experiences implementing
the TMB as a modular service.

4.1 Modular TMB Architecture
The software architecture of a TMB implementation is di-
vided into three tiers, as shown in Figure 1. At the heart of
the TMB is a “Transaction/Bus Management” component
that implements the full TMB semantics described in Sec-
tion 3 and enforces the consistency guarantees described
there. Below the transaction manager is a durable storage
component responsible for storing TMB state persistently
and recovering after a crash or other failure. Finally, there
is a networking layer that allows TMB clients in different
processes running on different machines to share a TMB
instance and communicate with each other.

The components in each tier are abstracted to make
them ‘pluggable.” For instance, if a TMB is only be-
ing used by clients on a single machine, there is no
need for any networking component. Similarly, if there
is no requirement for long-term durability of messages,
the Native TMB in-memory transaction manager can be
used without any persistent storage component as a high-
performance in-process “pure memory” message bus.

4.2 Transaction/Bus Management Tier
For the bus-management core, we have implemented our
own custom in-memory transaction manager, as well as
pluggable interfaces for the following four transactional
database systems: SQLite, LevelDB, Zookeeper, and
VoltDB. Our in-memory transaction manager can also be
used as an in-memory cache in front of these database
systems, in effect using our high-performance in-memory
transaction manager in combination with the durability
and recovery that is provided by these four systems.
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4.2.1 Custom In-Memory Transaction Manager
Here we describe our custom in-memory transaction man-
ager, which can be combined with any of several options
for persistence and recovery, or used alone as a “pure
memory” message bus.

Data Structures The global set of connected clients is
represented by a hash table that maps unique client IDs to
per-client records. The per-client records, in turn, consist
of a hash table of sendable message type IDs, a hash ta-
ble of receivable message type IDs, and a priority queue
of incoming messages (we have evaluated both max-heap
and balanced binary tree-based priority queue implemen-
tations). There is also a secondary index that maps re-
ceivable message type IDs to client IDs to speed up the
resolution of implicit addresses.

Concurrency Control Our initial transaction manager
design used well-known concurrency primitives to con-
trol access to shared data structures. We found that the
overhead associated with latching can cause severe per-
formance issues (especially when there are many actors
in a highly multi-threaded environment), so we designed a
lock-free user space concurrency control mechanism that
we callHybridCC, which borrows heavily from the read-
copy-update (RCU) [25] paradigm, as well as rw-locks
and reference-counting garbage collection. We omit de-
tails of the HybridCC implementation and its tuning for
multi-socket NUMA use cases here, but a full description
is available in the extended technical report [12].

The global hash-table of clients is protected by Hy-
bridCC. Connect and disconnect transactions modify the
hash-table, while all other transactions observe snapshot
isolation without blocking. Similarly, the per-client hash
tables of sendable and receivable message types as well as
the secondary receiver index hash-table are all protected
by HybridCC instances.

Each client’s queue of incoming messages is pro-
tected by a simple mutex, which is locked whenever any
operation (push, read, or delete) is performed on the
queue. To efficiently support the blocking version of the
Receive() call, a read operation that sees an empty
queue releases its lock on the mutex, and waits on a con-
dition variable. A subsequentpush operation that en-
queues a message, which satisfies the minimum priority
of the waitingread operation, signals the condition vari-
able, thereby waking the reader.

4.2.2 SQLite Transactions
SQLite [31] is a popular embedded SQL database library
that supports multi-statement ACID transactions. TMB
transactions are implemented as SQL queries over state
stored in five tables, with secondary indices to speed query
evaluation when appropriate:

• client - Contains a row for each connected client.
• sendable - Contains one row for each message type

sendable by each connected client.
• receivable - This table has the same schema as the

sendable table, but for receivable message types.
• message - Contains columns for a unique serial mes-

sage ID along with message contents and metadata.
• queued message - Contains one row with a foreign-

key reference to a row in themessage table for each
queued incoming message for each client.

4.2.3 LevelDB Transaction Management

LevelDB [16] is an embedded NoSQL key-value store.
It supportsput, get, anddeleteoperations on individual
key-value pairs, as well as iterators that allow seeking and
scanning over keys in order. Multiple reads can be issued
against the same consistent snapshot, and multiple write
operations can be combined into a single atomic batch.
We have built a minimal bus manager on the snapshot iso-
lation and atomic commit features present in LevelDB.
We use five different types of keys and mapped data struc-
tures in LevelDB that correspond closely to the five tables
used in the SQLite implementation.

4.2.4 Zookeeper Transaction Management

Apache Zookeeper [3] is a distributed NoSQL data store
with strong consistency guarantees. Zookeeper servers
are usually configured as an “ensemble”, with the service
remaining available so long as a majority of the servers
in the ensemble are up. Zookeeper servers synchronously
log data changes to disk as part of all modifying opera-
tions, and a single Zookeeper server can be used without
an ensemble if high availability in a cluster is not needed.

The Zookeeper data model is a tree of nodes not unlike
a conventional filesystem, except that there is no distinc-
tion between files and directories. Our Zookeeper-based
implementation has a directory structure that is broadly
similar to the ordered key structure of the LevelDB im-
plementation. The implementation of TMB transactions
is also quite similar to the LevelDB implementation, but
we had to handle and resolve anomalies that can arise
from multiple reads in a transaction observing different
versions of the data tree.

4.2.5 VoltDB Transactions

VoltDB [37] is a main-memory distributed SQL DBMS.
The TMB implementation for VoltDB is similar to that of
SQLite, with many of the same tables and transactions.
VoltDB allows stored procedures to be written in Java, so
we were able to embed some TMB logic directly in the
database that in other cases required implementation in
the TMB client library. To take advantage of VoltDB’s
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ability to efficiently execute transactions on different par-
titions of data in parallel, we denormalize the message
contents and the metadata into thequeued message ta-
ble, which is then partitioned on the receiver ID attribute.
Stored procedures implementing theReceive() and the
DeleteMessages() APIs are partitioned on client ID
for parallel execution, as is a fast-path version ofSend()
for the common case of a single explicit recipient.

4.3 Persistence & Recovery Tier

In order for the TMB state to be persistent and recoverable
after failures, we require a storage component that logs
transactions durably and allows us to reconstruct consis-
tent TMB state after a failure or interruption. For each of
the four third-party databases we developed a TMB im-
plementation that provides durable storage and recovery
of committed transactions. We also developed our own
minimal synchronous write-ahead log that can be used to
replay a TMB’s history and recover its state. Our native
write-ahead log is simple, and uses POSIX atomic I/O
syscalls for writes and thefdatasync() syscall to syn-
chronously flush log records when committing.

4.3.1 Synchronous vs. Asynchronous Logging

By default, all TMB implementations synchronously flush
logs to disk when committing a transaction so that data
loss is never experienced in case of a crash. Some im-
plementations do, however, allow logging to be asyn-
chronous so that the operating system can buffer a num-
ber of log writes together before flushing them to disk,
potentially allowing both lower latency for log writes and
higher overall messaging throughput, with the caveat that
some of the most recent messages may be lost in the event
of a crash. Asynchronous logging is optional for our na-
tive write-ahead log, as well as the LevelDB and VoltDB
implementations of the TMB. By default, we use syn-
chronous logging for the strongest possible durability, but
we do leave asynchronous logging as an option for users
that are willing to accept the trade-off for increased per-
formance. We conduct experiments in Section 5 compar-
ing both styles of logging.

4.4 Networking Tier

Finally, we describe the networking tier, which is neces-
sary for TMB clients running on different machines to
transparently share a TMB and communicate with each
other. There are two different approaches that we have
evaluated in the networking tier. The first is a custom
TMB network protocol that we developed on top of the
GRPC cross-platform RPC framework [17]. In this pro-
tocol, there is a single TMB server that is responsible for

running the TMB’s transaction manager, and all client ma-
chines connect to the server. If the server crashes, clients
must wait for it to become available again to continue
messaging (TMB calls will time out or fail with a net-
work error during this window, but clients can remain up
and TMB state will be restored exactly as it was upon re-
covery). We note that a number of cloud-hosting services
offer hot restart for VMs that crash, very quickly bringing
up a replacement server connected to the same persistent
disk. Although this is not truly uninterrupted service, it
may give sufficiently high uptime for many applications.

The other approach to the networking tier is to lever-
age the built-in network transparency of an existing dis-
tributed database (in our prototypes, we have experi-
mented with both Zookeeper and VoltDB). In this case,
the TMB library on clients communicates directly with
Zookeeper or VoltDB servers, and transaction manage-
ment is handled in the database itself. Zookeeper servers
are typically configured as an “ensemble” consisting of
an odd number of machines, with the overall system re-
maining available so long as a majority of the servers are
up and the network is not partitioned. VoltDB clusters
have a user-tunable “K-safety” parameter, which causes
each partition of data to be replicated across K + 1 dif-
ferent servers in the cluster, with replicas distributed so
that any K servers can fail simultaneously and the clus-
ter will remain fully available with all partitions online.
This latter approach to networking has the advantage of
high availability with zero interruptions in the face of in-
dividual server failures, although it may come at perfor-
mance penalty since transactions must be applied at mul-
tiple replicas instead of a single server. Operational costs
are also likely to be higher in this scenario, since multi-
ple servers with uncorrelated failure domains must be kept
running. An experimental evaluation comparing both net-
working approaches is contained in Section 5.4.

5 Experiments

In this section we present empirical results comparing the
various TMB implementations.

5.1 Stress-Test Benchmark

To evaluate the performance of different TMB imple-
mentations, we devised a stress-test throughput bench-
mark. This benchmark starts a configurable number of
sender and receiver threads, each of which connects to an
TMB instance as a client. The sender threads repeatedly
send messages as quickly as possible, randomly choos-
ing one receiver for each. We measure the total aggregate
throughput across all receivers in messages per second.
We conducted experimental runs with each TMB imple-
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mentation, varying the number of sender threads and mea-
suring the impact on throughput.

We conducted experiments to measure both the intra-
node and inter-node (i.e. scale-out) scalability of our
TMB implementations. We benchmarked each TMB im-
plementation on a multi-socket NUMA server with four
Intel Xeon E7-4850 CPUs running at 2.0 GHz (each CPU
has 10 cores and 20 hardware threads with 64 GB of di-
rectly attached memory), with a four-disk striped hard-
ware RAID as persistent storage.

For our first round of experiments, we set the affinity
mask of our benchmark executable so that it would run on
only one CPU socket and access only local memory. We
then conducted another round of experiments where we
used all four sockets to measure NUMA scalability. When
testing the Zookeeper and VoltDB implementations, the
server process was run on the same machine.

To measure inter-node performance, we configured a
cluster of dedicated virtual machine instances in Google
Compute Engine [15]. We configured servers to run ei-
ther the standalone TMB network protocol server or the
underlying Zookeeper or VoltDB service with 8 Xeon
CPU cores at 2.3 GHz, 30 GB of RAM, and a 128 GB
SSD. When benchmarking the TMB network server, we
used a single server. For experiments with Zookeeper
and VoltDB we used three servers, meaning that the
Zookeeper ensemble could tolerate the loss of one server
and remain available, and we similarly configured VoltDB
with a K-safety factor of 1. We configured a number of
“application” nodes to run the benchmark with 4 Xeon
CPU cores and 15 GB of RAM. We conducted experimen-
tal runs with 1, 2, 4, 8, and 16 application nodes, varying
the number of threads running on each.

We also sought to compare the performance of
the TMB against existing message-oriented middleware,
specifically Apache ActiveMQ (a message broker for the
Java Message Service) and the Spread Toolkit (a multicast
distributed messaging service with virtual synchrony).
We ported our stress-test benchmark to ActiveMQ and
Spread, and ran it under the exact same cloud server con-
figuration that we used to evaluate distributed TMB im-
plementations (three 8-core servers running ActiveMQ
brokers or Spread daemons, 1-16 quad-core application
nodes running client threads). ActiveMQ was configured
to use replicated LevelDB storage for persistent queues,
with the three servers acting as a quorum with automatic
failover for high availability. The three Spread daemons
were configured as a single “segment” with safe, and fully
atomic, multicast. Note that Spread doesnot support
durable message queues (i.e. messages can be lost if dae-
mons fail), so ActiveMQ and TMB are somewhat disad-
vantaged by their requirement to log messages durably in
this pure performance comparison.

5.2 Distributed Search Application

We also developed a sample distributed search applica-
tion using the TMB whose structure follows the exam-
ple presented throughout Section 3, with the addition of a
simple term frequency-inverse document frequency (TF-
IDF) ranking function. A client submits a set of keywords
for text search, and servers scan documents and return a
hit list with frequency counts for each keyword in each
matching document. The client then counts the total num-
ber of matching documents for each keyword to determine
each keyword’s inverse document frequency, and finally
ranks all the matching documents according to TF-IDF.

We ran four search servers (matching our application
node configuration above), each containing partitions of a
large English plain text corpus with 44 partitions in total,
each approximately 100 MB in size. Each data partition
was replicated on two different servers, and we distributed
the replicas so that each server contained a copy of 22 dif-
ferent partitions. We had a client submit a keyword search
request to one server for each partition. We then simulated
a straggler node by causing one of the servers to make four
passes over the same data before responding. Finally, we
had the client submit tied messages to both servers for
each partition in an attempt to mitigate the performance
impact of the straggler (servers cancel a request for their
peer when they begin working).

We used the VoltDB-based TMB implementation for
this experiment. All results below use the stress-test
benchmark, except Section 5.6, which contains the results
for the distributed search application.

5.3 Single-Node Performance

Figure 2 shows the relative performance of five TMB im-
plementations when running on a single CPU socket (10
cores / 20 hyperthreads). Recall that these implementa-
tions were described in Sections 4.2.1 through 4.2.5. In
Figure 2, the label “Native” indicates the use of the TMB
in-memory transaction manager in combination with the
TMB write-ahead log. The native log, LevelDB, and
VoltDB are all configured to use synchronous logging for
the strongest possible durability.

The first finding from this experiment is that the Na-
tive, LevelDB, and VoltDB implementations vastly out-
perform and out-scale the SQLite and Zookeeper imple-
mentations. Both LevelDB and VoltDB scale throughput
well with additional threads before eventually leveling out
when the number of sender threads far exceeds the num-
ber of hardware threads. The Native implementation is
I/O-bound and has flatter performance, but it should be
noted that it achieves the highest throughput when the
number of threads is equal to the number of physical CPU
cores (10), and achieves throughput only 9.5% below Lev-
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elDB’s peak of 20318 messages/s when the number of
threads is equal to the number of hardware threads (20).
VoltDB ultimately scales up to a higher peak throughput
when threads are heavily oversubscribed to cores.

We also examined the performance impact of op-
tional asynchronous logging for the Native, LevelDB,
and VoltDB TMBs. All three achieved higher messaging
throughput, with the Native TMB hitting 5X higher peak
throughput when the number of sender threads is equal to
the number of CPU cores (10).

In Figure 3, we examine the performance impact of us-
ing the TMB in-memory transaction manager as a cache
as described in Section 4.2.1, using LevelDB as the un-
derlying storage engine. Using the custom TMB transac-
tion manager as an in-memory cache improves the scal-
ability of the LevelDB-based TMB considerably, regard-
less of whether synchronous logging is used. In the asyn-
chronous case, the TMB cache eliminates the need for any
explicit snapshotting as well as any read contention, re-
ducing the interaction with LevelDB to a series of small
point writes, with average throughput of up to 93764 mes-
sages/s with 180 sender threads. In the synchronous case,
the TMB cache allows the message bus to continue scal-
ing up to 63272 messages/s with 240 sender threads, a
55% improvement over sync logging without the cache.

We also tested the TMB in-memory cache with the
SQLite, Zookeeper, and VoltDB-based TMBs. The cache
resulted in only a slight improvement for SQLite (calls
would still lock to serialize transactions), and had little
impact on VoltDB (this is to be expected, since VoltDB is
already a main-memory database). The Zookeeper im-
plementation experienced a 3.3X improvement in peak
throughput with the cache, although the highest through-
put achieved was still only 6685 messages/s.

We also conducted tests using all four CPUs in our
NUMA server, which we summarize here (a more com-
plete discussion is available in the extended technical re-
port [12]). We found that, for all persistent TMB imple-
mentations, the throughput scale-up curve was very sim-
ilar to the single-socket case (suggesting remote memory
access is not a significant bottleneck relative to disk I/O),

and using the TMB in-memory transaction manager as a
cache continued to boost performance.

5.4 Cluster Scale-Out

Figure 4 shows the results of our experiment using the
TMB network protocol server for communication in a
cluster. The server uses the TMB in-memory transaction
manager, and uses LevelDB (with synchronous logging)
for persistent storage1. We connected 1, 2, 4, 8, or 16
application nodes to the TMB, and measured throughput
with the stress-test benchmark. This graph shows a simi-
lar relationship between the number of sender threads and
the message bus throughput regardless of the number of
application nodes. This shows that messaging through-
put is effectively network-agnostic, with the TMB deliver-
ing the same throughput for a wide range of cluster sizes.
The data for 1 node and 16 nodes show throughput that
is slightly diminished relative to the other cluster sizes.
The 1 node case is limited by the load from heavily over-
subscribing threads to CPU cores on the application node,
while the 16 node case is limited by high CPU load and
many open network connections on the server.

Figure 5 shows the results of a similar experiment for
the distributed VoltDB TMB implementation. Recall from
Section 4.4 that a distributed database like VoltDB allows
for a different approach to networking, with clients com-
municating directly with VoltDB servers and transaction
management handled in VoltDB itself. We ran VoltDB on
three server nodes (a cluster with K-safety = 1). Once
again, despite the different approach to the networking
tier, we see that messaging throughput scales in an effec-
tively network-agnostic fashion, with throughput slightly
diminished when clients or servers are heavily loaded.

We also experimented with a variable number of
VoltDB servers (fixing the number of application nodes at
8). Adding additional servers increases the average mes-
sage throughput in the cluster for any number of sender

1We use LevelDB for the TMB Net Server’s persistent storage, as it
showed the best performance characteristics of the synchronous persis-
tence options in the single-node experiments described in Section 5.3.
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threads, with the difference more pronounced for a higher
number of threads. We do note that the throughput scale-
up from adding more VoltDB servers is less than linear
(for instance, with 384 sender threads, a configuration of
6 VoltDB servers achieved 27% higher throughput than 3
servers, while 9 servers achieved 42% higher throughput).

Finally, we evaluated the Zookeeper TMB implemen-
tation in the cluster environment. As with the single-
node case, performance was underwhelming. The high-
est throughput was 4783 messages/s for 8 application
nodes. Unlike the TMB network server and TMB on
VoltDB, the relationship between threads and throughput
was not cluster-agnostic, with smaller clusters of applica-
tion nodes experiencing significantly lower throughput.

5.5 Comparison With ActiveMQ & Spread

Figure 6 shows the throughput of our stress-test bench-
mark using the TMB network server with LevelDB stor-
age and TMB on VoltDB vs. the ActiveMQ message bro-
ker and the Spread Toolkit. With 8 application nodes, Ac-
tiveMQ’s message throughput is in the range of 950 to 990
messages/s regardless of the number of sender threads.
Spread achieves its highest throughput when there are few
threads running on each node (30205 message/s with only
a single sender and receiver thread on each VM), with
performance diminishing due to contention as additional
threads are added. In contrast, the two TMB implemen-
tations’ throughput scales with additional threads, with
throughput from 6.4X to 34X higher than ActiveMQ de-
pending on the number of threads. Either TMB imple-
mentation achieves higher throughput than Spread above
64 sender threads (the number of cores in the cluster) and,
unlike Spread, the TMB stores messages durably.

Both the TMB network protocol server and TMB on
VoltDB have very similar throughput curves. The com-
parison is not entirely fair, however, as the TMB net-
work server uses only a single machine, while TMB on
VoltDB uses three. On the one hand, this means that oper-
ational costs for the TMB network server should be lower.
On the other hand, TMB on VoltDB is more resilient to

server failures, and can maintain high availability with
zero downtime if one server fails.

These results show that the TMB design approach,
leveraging either a custom-built lightweight transaction
manager and network protocol or a high-performance
distributed DBMS, compares favorably with leading
purpose-built MOM systems.

5.6 Distributed Search Results

We ran our sample text search and ranking application us-
ing a cluster of four search servers each containing repli-
cas of a large partitioned text data set as described in Sec-
tion 5.2. The results for this experiment are shown in Fig-
ure 7. We ran a full-text keyword search on the unloaded
servers, which completed in 3.66s. We then simulated a
straggler node, which caused the completion time to in-
crease to 14.35 s. Finally, we enabled cancellable tied
messages, which allowed the search to complete in 5.05 s
despite the slow performance of the straggler node. This
demonstrates the effectiveness of tied messages in dealing
with lagging and unreliable components.

6 Conclusions
In this paper, we have compared the features in a num-
ber of existing communication frameworks, and designed
a new communication framework called the Transactional
Message Bus that provides a combined richer set of fea-
tures than existing approaches. We presented the seman-
tics of the TMB, and designed a modular, pluggable multi-
tier software architecture for TMB implementations. We
have developed and evaluated a number of alternative
TMB implementations using this architecture, some of
which are “custom” and written from scratch and others
which leverage the features of existing database systems.
We also compared the performance of a TMB with the
popular messaging frameworks Apache ActiveMQ and
Spread. Our results show that TMBs achieve performance
far higher than ActiveMQ and competitive with Spread, as
well as a richer feature set than either.
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