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Introduction and background
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Where Google makes its cash
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AdWords!



AdWords overview

5

~97% of Google’s revenue is 
from advertising!

Need to track lots of info:
Customer information
Ad campaign preferences
Displayed ads
Clicked ads
Follow-through purchases
…



AdWords technology ecosystem

6

Ads DB??? ???

?????? ???

??? ??? ???

MySQL



The homegrown parallel RDBMS blues
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Data partitioned across dozens of 
MySQL instances.

Have to manually repartition to add 
servers.

Developers make assumptions
about where data lives.

Limited cross-machine transactions.



Revenue paranoia
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Data synchronously replicated 
across multiple machines.

Can handle machine failure; 
what about datacenter failure?



AdWords technology ecosystem
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MySQL??? ???

?????? ???

??? ??? ???

F1



F1 design overview
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What is F1?
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F1 is a distributed, relational 
database designed for both 
OLAP and OLTP.

Full SQL support with ACID 
semantics for transactions.

Shute, J., Vingralek, R., Samwel, B., et al. (2013).  “F1: A Distributed Database That 
Scales,” VLDB, 6(11).



Two main design goals
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Fault tolerance

Scalability



Fault tolerance
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F1 is globally distributed
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A single F1 instance consists 
of thousands of servers in 
datacenters across the globe.

Data is synchronously 
replicated across datacenters.



F1 architecture
F1 servers
(query processing)

Spanner
(cross-datacenter storage)

Colossus
(distributed filesystem)

Datacenter A Datacenter B 12



Spanner: next-generation BigTable
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Spanner uses Paxos and 2PC to 
synchronously replicate data 
across datacenters.

Spanner does the storage-related 
“heavy lifting” for F1.

Corbett, J. C., Dean, J., Epstein, M., et al. (2012).  “Spanner: Google’s Globally-
Distributed Database,” OSDI.



More Spanner features
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Spanner provides guaranteed 
unique commit timestamps for 
transactions.

Spanner supports strict two-
phase locking for pessimistic 
transactions.



F1 and Spanner
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F1 uses Spanner mostly as a key-value store:
Get(key prefix)
Put(key, value)
Delete(key) 

Spanner pessimistic transactions are used to enable atomic 
test-and-set of multiple values.  



Scalability
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Stateless servers
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All data is shared among all servers.

Servers can be added or removed with no data movement.

Clients can send a request to any server, even different 
requests that are part of the same transaction.



Transactions in F1
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Use a form of optimistic concurrency control, with all state 
stored on the client (not F1 server).

Limited to one atomic write operation (implicitly commits).

Spanner pessimistic transactions also supported, but not 
stateless.



Optimistic lock columns

22

Every column is covered by a hidden 
optimistic lock column containing a last-
modified timestamp.

When a column is updated, the commit 
timestamp of the updating transaction is 
stored in its covering lock column.



Configurable locking granularity
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Users can specify which lock covers a 
column.

By default, all columns in a row are 
covered by a default lock.



Optimistic transactions: reads
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When an optimistic transaction 
reads a column value, it also reads 
the corresponding lock timestamp.

Lock timestamps for all reads are 
buffered on the client for the 
duration of the transaction.

Lock 
name

Buffered 
timestamp

Lock1 ts1

Lock7 ts2

Lock3 ts3



Optimistic transactions: write + commit
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At commit, all buffered 
timestamps are validated 
against the lock timestamps 
currently in the database.

Lock 
name

Buffered 
timestamp

Current
timestamp

Lock1 ts1 ts1

Lock7 ts2 ts4

Lock3 ts3 ts3

If there is a mismatch, the 
transaction aborts.



Optimistic transaction example
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Name Age Lock1
John Doe 26 ts1

T1: read (Age) -> get value 26, read 
lock1 and get ts1

T2: write (Age) -> set value = 27, 
lock1 is updated to ts2

T1: commit -> validate lock1 (ts1 != ts2),
abort

Name Age Lock1
John Doe 27 ts2



Schema changes
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Schemas in F1
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F1 servers use a schema to interpret key-value pairs as rows 
and to translate relational operations into key-value 
operations.



Why is schema change in F1 important?
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The AdWords F1 instance is shared
by many teams with hundreds of 
developers.

Schema changes requested daily.

Data in F1 is critical to Google’s 
business.

Any downtime or corruption is 
measured in dollars!



Why is schema change in F1 hard?
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Every F1 server has a local cached copy of the schema.

To change the schema, we need to update all the caches, 
but synchronizing across all F1 servers is slow.

Until the change finishes, no operations can execute -> no money!



The goal for schema changes in F1
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Enable changes to the logical and physical schema of an F1 
instance in a way that is online and asynchronous.

Online
All data accessible, no downtime, and without large delays for 
transactions.

Asynchronous
Different servers transition to a new schema at different times.



A paper is available
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A protocol for online, asynchronous schema change that 
permits no database corruption.

A formal model for reasoning about and proving the 
correctness of our protocol.

Rae, I., Rollins, E., Shute, J., et al. (2013).  “Online, Asynchronous Schema Change 
in F1,” VLDB, 6(11).



Some terminology

Schema elements
Any part of the schema, e.g., 
tables, columns, constraints, etc.
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Structural elements
Tables
Columns
Indexes
Locks

Structural 
elements

Schema elements



User-visible states of schema elements

Absent
Doesn’t exist!
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Public
Available for all operations.



Ensuring correctness

Use intermediate states that 
restrict allowed operations on an 
element.
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Decompose incompatible schema 
changes into a series of changes that 
are pair-wise compatible. 



An illustration
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All servers on 
old schema.

All servers on 
new schema.

Both schemas 
in use!



Supported schema changes
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Add/drop structural elements
Table add + drop
Column add + drop
Index add + drop
Lock add + drop

Concurrency control
Change lock coverage

Add/drop constraints
Change column type
Make column unique/non-unique
Foreign key add + drop
Make column required/optional
Change protocol buffer definition
…



Adding and dropping
structural elements
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Index add corruption
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New index I

Table R

Change from schema S to Sʹ, adding index I on table R.

Sʹ
Server A

S
Server B

Corruption!



Intermediate states for structural elements
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Delete only
Updated by delete operations; cannot be read.

Write only
Updated by delete and insert operations; cannot be read.



Index add revisited
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S

Sʹ

S1

S4

S2

S3

Change from schema S1 to S4, 
adding index I on table R.



Index add: absent to delete only
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S1

S4

S2

S3

Index I doesn’t exist.

Index I exists, updated only by deletes.
Index I is not used for reads.

S1

S2

Index is always empty, but unused.



Index add: delete only to write only
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S1

S4

S2

S3

Index I exists, updated only by deletes.
Index I is not used for reads.

Index I exists, updated by deletes & inserts.
Index I is not used for reads.

S2

S3

All servers delete entries, so no 
dangling entries are possible.



Index add: backfill
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S1

S4

S2

S3

Index I exists, updated by deletes & inserts.
Index I is not used for reads.

A MapReduce starts to backfill index I.

S3

All servers maintain index for 
new rows.



Index add: write only to public
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S1

S4

S2

S3

Index I is public and ready to use.

Index I is completely backfilled.

S4



Adding and dropping
constraints
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Constraint corruption
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Problem: servers on schema S can insert duplicates into 
column C that servers on schema Sʹ don’t expect!

Change from schema S to Sʹ, making column C unique.

Bonus problem: how do we verify that column C only 
contains unique values?



Intermediate states for constraints
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Write only
Constraint applies to inserts and updates, but is not 
guaranteed to hold for reads.



Constraint add revisited
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S

Sʹ

Change from schema S1 to S3, 
making column C unique.

S1

S3

S2



Constraint add: absent to write only
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Column C is not unique.

Column C cannot have duplicates inserted.
Reads may show duplicates.

S1

S2

S1

S3

S2



Constraint add: verification

51

Column C cannot have duplicates inserted.
Reads may show duplicates.

A MapReduce starts to verify that column C
contains only unique values.

S2

No server allows new duplicates 
to be inserted.

S1

S3

S2



Constraint add: write only to public
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Column C is unique for reads and writes.

Column C is verified unique.

S3

S1

S3

S2



Concurrency control
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Concurrency corruption

54

Problem: servers on schema S don’t validate writes to 
column C by servers on schema Sʹ!

Change from schema S to Sʹ, changing the lock coverage of 
column C from L1 to L2.



Concurrency corruption example
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T1: read(C) using S -> read ts1 from L1

T2: write(C) using Sʹ -> update L2 to ts2

T1: write(C) using S -> validate ts1 against L1 (works!)

Corruption!



Intermediate states for lock coverage
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Dual coverage
A column is covered by two locks.



Dual coverage semantics
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On a write, the timestamp is validated against both locks.

On a read, the timestamp returned is the maximum of both 
locks.



Lock coverage change revisited
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S

Sʹ

Change from schema S1 to S3, 
changing lock coverage of 
column C from L1 to L2.

S1

S3

S2



Coverage change: L1 to dual coverage
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Column C is covered by L1.

Column C is covered by L1 and L2.

S1

S2

S1

S3

S2

L1 handles concurrency control.



Coverage change: dual coverage to L2
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Column C is covered by L1 and L2.

Column C is covered by L2.

S2

S3

S1

S3

S2

L2 handles concurrency control.



More concurrency corruption
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T1: read(C) using S1 -> read ts1 from L1

T2: write(C) using S1 -> update L1 to ts2

T1: write(C) using S3 -> validate ts1 against L2 (works!)

Suppose both L1 and L2 have the same timestamp.



Coverage change: propagation

62

Column C is covered by L1 and L2.

A MapReduce sets L2 = max(L1, L2).

S2

Timestamps propagate from L1 
to L2.

S1

S3

S2



Some implementation details
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Schema leases

Canonical schema file is stored in 
Spanner.
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Once per lease period, F1 servers 
reload the canonical schema if needed.

If a server cannot read the schema, it 
terminates and restarts.



Batching

Modifications to the schema are 
first committed to source control, 
not a live F1 instance.
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Schema change process periodically
applies modifications present in 
source control as a batch.



More details in the paper!

Paper has a lot of other stuff
Formal model and proofs
Concurrency control schema changes
Details on overlapping state transitions
Discussion of MapReduces needed
More implementation details
…
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Conclusion

F1 is a globally distributed, fault-tolerant relational database 
that serves as the main data store for Google AdWords.
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Check out the papers for more details:

Rae, I., Rollins, E., Shute, J., et al. (2013).  “Online, Asynchronous Schema Change in F1,” 
VLDB, 6(11).

Shute, J., Vingralek, R., Samwel, B., et al. (2013).  “F1: A Distributed Database That Scales,” 
VLDB, 6(11).


