
An overview of Google F1
(with an emphasis on schema change)

Ian Rae
ian@cs.wisc.edu

1

Talk outline

2

Introduction and background

Design overview

Schema changes

Conclusion

Introduction and background

3

Where Google makes its cash

4

AdWords!

AdWords overview

5

~97% of Google’s revenue is
from advertising!

Need to track lots of info:
Customer information
Ad campaign preferences
Displayed ads
Clicked ads
Follow-through purchases
…

AdWords technology ecosystem

6

Ads DB??? ???

?????? ???

??? ??? ???

MySQL

The homegrown parallel RDBMS blues

7

Data partitioned across dozens of
MySQL instances.

Have to manually repartition to add
servers.

Developers make assumptions
about where data lives.

Limited cross-machine transactions.

Revenue paranoia

8

Data synchronously replicated
across multiple machines.

Can handle machine failure;
what about datacenter failure?

AdWords technology ecosystem

9

MySQL??? ???

?????? ???

??? ??? ???

F1

F1 design overview

10

What is F1?

11

F1 is a distributed, relational
database designed for both
OLAP and OLTP.

Full SQL support with ACID
semantics for transactions.

Shute, J., Vingralek, R., Samwel, B., et al. (2013). “F1: A Distributed Database That
Scales,” VLDB, 6(11).

Two main design goals

12

Fault tolerance

Scalability

Fault tolerance

13

F1 is globally distributed

14

A single F1 instance consists
of thousands of servers in
datacenters across the globe.

Data is synchronously
replicated across datacenters.

F1 architecture
F1 servers
(query processing)

Spanner
(cross-datacenter storage)

Colossus
(distributed filesystem)

Datacenter A Datacenter B 12

Spanner: next-generation BigTable

16

Spanner uses Paxos and 2PC to
synchronously replicate data
across datacenters.

Spanner does the storage-related
“heavy lifting” for F1.

Corbett, J. C., Dean, J., Epstein, M., et al. (2012). “Spanner: Google’s Globally-
Distributed Database,” OSDI.

More Spanner features

17

Spanner provides guaranteed
unique commit timestamps for
transactions.

Spanner supports strict two-
phase locking for pessimistic
transactions.

F1 and Spanner

18

F1 uses Spanner mostly as a key-value store:
Get(key prefix)
Put(key, value)
Delete(key)

Spanner pessimistic transactions are used to enable atomic
test-and-set of multiple values.

Scalability

19

Stateless servers

20

All data is shared among all servers.

Servers can be added or removed with no data movement.

Clients can send a request to any server, even different
requests that are part of the same transaction.

Transactions in F1

21

Use a form of optimistic concurrency control, with all state
stored on the client (not F1 server).

Limited to one atomic write operation (implicitly commits).

Spanner pessimistic transactions also supported, but not
stateless.

Optimistic lock columns

22

Every column is covered by a hidden
optimistic lock column containing a last-
modified timestamp.

When a column is updated, the commit
timestamp of the updating transaction is
stored in its covering lock column.

Configurable locking granularity

23

Users can specify which lock covers a
column.

By default, all columns in a row are
covered by a default lock.

Optimistic transactions: reads

24

When an optimistic transaction
reads a column value, it also reads
the corresponding lock timestamp.

Lock timestamps for all reads are
buffered on the client for the
duration of the transaction.

Lock
name

Buffered
timestamp

Lock1 ts1

Lock7 ts2

Lock3 ts3

Optimistic transactions: write + commit

25

At commit, all buffered
timestamps are validated
against the lock timestamps
currently in the database.

Lock
name

Buffered
timestamp

Current
timestamp

Lock1 ts1 ts1

Lock7 ts2 ts4

Lock3 ts3 ts3

If there is a mismatch, the
transaction aborts.

Optimistic transaction example

26

Name Age Lock1
John Doe 26 ts1

T1: read (Age) -> get value 26, read
lock1 and get ts1

T2: write (Age) -> set value = 27,
lock1 is updated to ts2

T1: commit -> validate lock1 (ts1 != ts2),
abort

Name Age Lock1
John Doe 27 ts2

Schema changes

27

Schemas in F1

28

F1 servers use a schema to interpret key-value pairs as rows
and to translate relational operations into key-value
operations.

Why is schema change in F1 important?

29

The AdWords F1 instance is shared
by many teams with hundreds of
developers.

Schema changes requested daily.

Data in F1 is critical to Google’s
business.

Any downtime or corruption is
measured in dollars!

Why is schema change in F1 hard?

30

Every F1 server has a local cached copy of the schema.

To change the schema, we need to update all the caches,
but synchronizing across all F1 servers is slow.

Until the change finishes, no operations can execute -> no money!

The goal for schema changes in F1

31

Enable changes to the logical and physical schema of an F1
instance in a way that is online and asynchronous.

Online
All data accessible, no downtime, and without large delays for
transactions.

Asynchronous
Different servers transition to a new schema at different times.

A paper is available

32

A protocol for online, asynchronous schema change that
permits no database corruption.

A formal model for reasoning about and proving the
correctness of our protocol.

Rae, I., Rollins, E., Shute, J., et al. (2013). “Online, Asynchronous Schema Change
in F1,” VLDB, 6(11).

Some terminology

Schema elements
Any part of the schema, e.g.,
tables, columns, constraints, etc.

33

Structural elements
Tables
Columns
Indexes
Locks

Structural
elements

Schema elements

User-visible states of schema elements

Absent
Doesn’t exist!

34

Public
Available for all operations.

Ensuring correctness

Use intermediate states that
restrict allowed operations on an
element.

35

Decompose incompatible schema
changes into a series of changes that
are pair-wise compatible.

An illustration

36

All servers on
old schema.

All servers on
new schema.

Both schemas
in use!

Supported schema changes

37

Add/drop structural elements
Table add + drop
Column add + drop
Index add + drop
Lock add + drop

Concurrency control
Change lock coverage

Add/drop constraints
Change column type
Make column unique/non-unique
Foreign key add + drop
Make column required/optional
Change protocol buffer definition
…

Adding and dropping
structural elements

38

Index add corruption

39

New index I

Table R

Change from schema S to Sʹ, adding index I on table R.

Sʹ
Server A

S
Server B

Corruption!

Intermediate states for structural elements

40

Delete only
Updated by delete operations; cannot be read.

Write only
Updated by delete and insert operations; cannot be read.

Index add revisited

41

S

Sʹ

S1

S4

S2

S3

Change from schema S1 to S4,
adding index I on table R.

Index add: absent to delete only

42

S1

S4

S2

S3

Index I doesn’t exist.

Index I exists, updated only by deletes.
Index I is not used for reads.

S1

S2

Index is always empty, but unused.

Index add: delete only to write only

43

S1

S4

S2

S3

Index I exists, updated only by deletes.
Index I is not used for reads.

Index I exists, updated by deletes & inserts.
Index I is not used for reads.

S2

S3

All servers delete entries, so no
dangling entries are possible.

Index add: backfill

44

S1

S4

S2

S3

Index I exists, updated by deletes & inserts.
Index I is not used for reads.

A MapReduce starts to backfill index I.

S3

All servers maintain index for
new rows.

Index add: write only to public

45

S1

S4

S2

S3

Index I is public and ready to use.

Index I is completely backfilled.

S4

Adding and dropping
constraints

46

Constraint corruption

47

Problem: servers on schema S can insert duplicates into
column C that servers on schema Sʹ don’t expect!

Change from schema S to Sʹ, making column C unique.

Bonus problem: how do we verify that column C only
contains unique values?

Intermediate states for constraints

48

Write only
Constraint applies to inserts and updates, but is not
guaranteed to hold for reads.

Constraint add revisited

49

S

Sʹ

Change from schema S1 to S3,
making column C unique.

S1

S3

S2

Constraint add: absent to write only

50

Column C is not unique.

Column C cannot have duplicates inserted.
Reads may show duplicates.

S1

S2

S1

S3

S2

Constraint add: verification

51

Column C cannot have duplicates inserted.
Reads may show duplicates.

A MapReduce starts to verify that column C
contains only unique values.

S2

No server allows new duplicates
to be inserted.

S1

S3

S2

Constraint add: write only to public

52

Column C is unique for reads and writes.

Column C is verified unique.

S3

S1

S3

S2

Concurrency control

53

Concurrency corruption

54

Problem: servers on schema S don’t validate writes to
column C by servers on schema Sʹ!

Change from schema S to Sʹ, changing the lock coverage of
column C from L1 to L2.

Concurrency corruption example

55

T1: read(C) using S -> read ts1 from L1

T2: write(C) using Sʹ -> update L2 to ts2

T1: write(C) using S -> validate ts1 against L1 (works!)

Corruption!

Intermediate states for lock coverage

56

Dual coverage
A column is covered by two locks.

Dual coverage semantics

57

On a write, the timestamp is validated against both locks.

On a read, the timestamp returned is the maximum of both
locks.

Lock coverage change revisited

58

S

Sʹ

Change from schema S1 to S3,
changing lock coverage of
column C from L1 to L2.

S1

S3

S2

Coverage change: L1 to dual coverage

59

Column C is covered by L1.

Column C is covered by L1 and L2.

S1

S2

S1

S3

S2

L1 handles concurrency control.

Coverage change: dual coverage to L2

60

Column C is covered by L1 and L2.

Column C is covered by L2.

S2

S3

S1

S3

S2

L2 handles concurrency control.

More concurrency corruption

61

T1: read(C) using S1 -> read ts1 from L1

T2: write(C) using S1 -> update L1 to ts2

T1: write(C) using S3 -> validate ts1 against L2 (works!)

Suppose both L1 and L2 have the same timestamp.

Coverage change: propagation

62

Column C is covered by L1 and L2.

A MapReduce sets L2 = max(L1, L2).

S2

Timestamps propagate from L1
to L2.

S1

S3

S2

Some implementation details

63

Schema leases

Canonical schema file is stored in
Spanner.

64

Once per lease period, F1 servers
reload the canonical schema if needed.

If a server cannot read the schema, it
terminates and restarts.

Batching

Modifications to the schema are
first committed to source control,
not a live F1 instance.

65

Schema change process periodically
applies modifications present in
source control as a batch.

More details in the paper!

Paper has a lot of other stuff
Formal model and proofs
Concurrency control schema changes
Details on overlapping state transitions
Discussion of MapReduces needed
More implementation details
…

66

Conclusion

F1 is a globally distributed, fault-tolerant relational database
that serves as the main data store for Google AdWords.

67

Check out the papers for more details:

Rae, I., Rollins, E., Shute, J., et al. (2013). “Online, Asynchronous Schema Change in F1,”
VLDB, 6(11).

Shute, J., Vingralek, R., Samwel, B., et al. (2013). “F1: A Distributed Database That Scales,”
VLDB, 6(11).

