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ABSTRACT

Foundation models have revolutionized artificial intelligence, yet fundamental challenges remain in
understanding and optimizing their capabilities in adaptation and inference. This document presents
several interconnected contributions advancing the theoretical understanding and practical deployment
of foundation models. First, we provide theoretical justification for multitask finetuning approaches in
foundation models, demonstrating that diverse task selection leads to reduced error in target tasks with
limited labeled data. We develop novel diversity and consistency metrics to quantify task relationships
and propose an effective task selection algorithm. Second, we investigate the compositional abilities
of large language models (LLMs) through in-context learning, revealing that while models excel at
simpler composite tasks involving distinct input segments, they struggle with multi-step reasoning
tasks. Our theoretical analysis explains this behavior, showing that compositional capability emerges
when tasks process different input parts separately. Additionally, we contribute to collaborative work
in understanding LLM behavior regarding the scale effects in in-context learning. Together, these
contributions advance our understanding of capabilities and limitations in foundation models while
providing practical insights for their effective utilization.
To further extend these advances, our ongoing work focuses on two areas: analyzing induction heads
to understand out-of-distribution generalization mechanisms in LLM architectures, and developing
adaptive inference frameworks for multimodal LLMs to improve deployment efficiency.
Our proposed future work will pursue two directions: First, we will develop token-level and model-
level optimization techniques to improve inference efficiency while maintaining model performance,
addressing the computational challenges in deploying large foundation models. Second, we will
advance mechanistic interpretability by analyzing internal model representations and attention patterns
during reasoning tasks, aiming to uncover how these models process and combine information to
reach conclusions. These investigations will contribute fundamental insights into LLM capabilities
while providing practical techniques for enhancing model performance and interpretability.
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Chapter 1

Introduction

The emergence of foundation models [Bommasani et al., 2021] has fundamentally transformed the landscape of
artificial intelligence (AI), enabling unprecedented capabilities across diverse domains. These models, exemplified
by large language models (LLMs) (e.g., BERT [Devlin et al., 2019], Llama [Touvron et al., 2023a,b], GPT-3 [Brown
et al., 2020], GPT-4 [OpenAI, 2023]), vision models (e.g., CLIP [Radford et al., 2021] and DINOv2 [Oquab et al.,
2023]), and multimodal large language models (MLLMs) (e.g., GPT-4V(ision) [OpenAI, 2022b], Claude-3 [Anthropic,
2024], Llama-3 [Meta, 2024]) have demonstrated remarkable abilities across multiple modalities and tasks—from
basic classification and recognition to complex understanding and reasoning, leading to some of the most exciting
developments in AI to date.

Despite their remarkable capabilities, foundation models face a fundamental challenge as the “Specialization Gap”—the
difficulty of transforming general-purpose models into efficient domain experts. This gap manifests through three
interconnected barriers: (1) Knowledge Barrier: Models possess broad but shallow knowledge, struggling to develop
the deep expertise required for specialized tasks without extensive labeled data. For instance, while a vision model
may recognize general visual patterns from broad pretraining data, it struggles to adapt to specialized domains like
identifying rare butterfly species or distinguishing subtle variations in cancer cell morphology; (2) Reasoning Barrier:
Models lack the structured reasoning patterns needed for complex compositional tasks that require combining multiple
concepts or executing multi-step logical processes, such as combining question-answering with translation, or text
summarization with numerical extraction; and (3) Efficiency Barrier: Model’s full capacity is unable to deployed under
resource constraints, such as memory limitations on edge devices or latency requirements in real-time applications. Our
research addresses the fundamental question: how can we bridge this specialization gap through adaptive transformation
techniques that overcome these barriers simultaneously?"

My work addresses these by developing targeted adaptation techniques and analyzing the mechanisms behind com-
positional reasoning, and creating adaptive frameworks for resource-efficient deployment. We mainly address these
challenges through theoretical analysis, empirical studies, and practical solutions.

Effective adaptation. First, we tackle the challenge of adapting foundation models to new tasks with limited labeled
data. While these models excel at many tasks, their effective adaptation, especially in few-shot scenarios, remains both
a practical challenge and a theoretical mystery. We present a theoretical framework for analyzing multitask finetuning,
revealing that with a diverse set of relevant tasks, this approach can significantly reduce error in target tasks compared
to direct adaptation. Our analysis quantifies the relationship between finetuning tasks and target tasks through novel
diversity and consistency metrics, leading to practical algorithms for task selection that substantially improve adaptation
performance.

Understanding compositional ability. Second, we delve into understanding the cognitive capabilities of large language
models, specifically focusing on their ability to handle composite tasks. While these models demonstrate remarkable
in-context learning capabilities, their approach to solving unseen complex tasks that combine multiple simple tasks
remains poorly understood. Through systematic empirical studies, we uncover that models exhibit divergent behaviors:
they show promising performance on simpler composite tasks that apply distinct operations to different input segments
but struggle with multi-step reasoning tasks. Our theoretical analysis in a simplified setting provides insights into why
models succeed in certain compositional scenarios while failing in others, contributing to our fundamental understanding
of these systems.
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Efficient Inference. Third, we have an ongoing work exploring adaptive inference techniques for foundation models
under varying resource constraints. Our key insight is that an multimodal LLMs can be conceptualized as a collection
of shallower models, which can be leveraged for dynamic reconfiguration during inference. We develop AdaLLaVA,
a framework that dynamically adjusts model computation based on input content and latency constraints. Our initial
results show promising directions for maintaining model performance while adapting to different computational budgets
at inference time.

Beyond these primary contributions, we have also advanced the understanding of foundation models through several
complementary investigations. Through collaborations, I contributed to understanding scale effects in in-context
learning [Shi et al., 2024b] and investigating induction heads for out-of-distribution generalization [Song et al., 2024].
These investigations collectively enhance our understanding of model behavior and deployment considerations.

Building on our completed work in few-shot adaptation and compositional reasoning, and our ongoing work adaptive
inference, my work investigates how to enhance foundation models’ specialized capabilities. For the proposed work in
my ongoing plan, we will focus on two aspect (details in Chapter 6). First, extending our work on adaptive inference,
we aim to develop a comprehensive efficiency framework that dynamically optimizes model deployment through
intelligent token selection and selective component activation. Second, we will conduct a systematic investigation of
the relationship between model architecture and reasoning capabilities in LLMs. This work will analyze how architec-
tural elements—particularly attention patterns and induction heads—influence in-context learning and compositional
reasoning abilities. By identifying and strengthening key architectural components responsible for reasoning, we aim to
develop more robust and efficient models that maintain strong performance on complex tasks while requiring fewer
computational resources.

The remainder of this document is organized as follows: Chapter 2 provides necessary background and related work.
Chapter 3 presents our theoretical analysis of multitask finetuning and its empirical validation. Chapter 4 explores the
compositional abilities of large language models through both empirical studies and theoretical analysis. Chapters 5
and 6 discussed our ongoing and proposed works. Chapter 7 discussed my additional collaborative works and the
connections between my research components and outlined the timeline for my proposed work and defense schedule.
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Chapter 2

Background and Related Work

2.1 Adaptation of Foundation Models

Training Foundation Models. Foundation models [Bommasani et al., 2021] are typically trained using self-supervised
learning over broad data. The most commonly used training approaches include contrastive learning in vision and
masked modeling in NLP. Our theoretical analysis considers both approaches under a unified framework. Here we
briefly review these approaches.

Contrastive learning, in a self-supervised setting, aims to group randomly augmented versions of the same data point
while distinguishing samples from diverse groups. The success of this approach in vision and multi-modal training
tasks [Oord et al., 2018; Chen et al., 2020; He et al., 2020; Tian et al., 2020a; Grill et al., 2020; Radford et al., 2021]
has spurred considerable interest. Several recent studies [Arora et al., 2019; HaoChen et al., 2021; Tosh et al., 2021;
Zimmermann et al., 2021; Wei et al., 2021; Wang and Isola, 2020; Wen and Li, 2021; Wang et al., 2022; Shi et al.,
2023a; Huang et al., 2023; Sun et al., 2023b,a] seek to develop its theoretical understanding. Arora et al. [2019]
established theoretical guarantees on downstream classification performance. HaoChen et al. [2021] provided analysis
on spectral contrastive loss. Their analysis assumes the pretraining and target tasks share the same data distribution and
focus on the effect of contrastive learning on direct adaptation. My prior work (details in Chapter 3) focuses on the
novel class setting and investigates further finetuning the pretrained model with multitask to improve performance.

Masked modeling seeks to predict masked tokens in an input sequence. This self-supervised approach is the foundation
of many large language models [Devlin et al., 2019; Liu et al., 2019; Chowdhery et al., 2022; Ni et al., 2022; Touvron
et al., 2023a], and has been recently explored in vision [He et al., 2022]. In the theoretical frontier, Zhao et al. [2023]
formulated masked language modeling as standard supervised learning with labels from the input text. They further
investigated the relationship between pretrained data and testing data by diversity statement. My prior work (details in
Chapter 3) subsumes their work as a special case, and can explain a broader family of pretraining methods.

Adapting Foundation Models. Adapting foundation models to downstream tasks has recently received significant
attention. The conventional wisdom, mostly adopted in vision [Vinyals et al., 2016; Ge and Yu, 2017; Chen et al., 2020;
He et al., 2020, 2022; Shi et al., 2023b], involves learning a simple function, such as linear probing, on the representation
from a foundation model, while keeping the model frozen or minorly finetuning the whole model. In NLP, prompt-based
finetuning [Gao et al., 2021a; Hu et al., 2022b; Chung et al., 2022; Song et al., 2022; Zhou et al., 2022b; Xie et al.,
2023; Zhang et al., 2023a] was developed and widely used, in which a prediction task is transformed into a masked
language modeling problem during finetuning. With the advances in large language models, parameter-efficient tuning
has emerged as an attractive solution. Prompt tuning [Lester et al., 2021; Li and Liang, 2021; Roberts et al., 2023]
learns an extra prompt token for a new task, while updating minimal or no parameters in the model backbone. Another
promising approach is in-context learning [Min et al., 2022c; Wei et al., 2022a,b; Shi et al., 2023d; Xu et al., 2024b],
where the model is tasked to make predictions based on contexts supplemented with a few examples, with no parameter
updates. In this paper, we consider adapting foundation models to new tasks with limited labels. Parameter-efficient
tuning, such as in-context learning, might face major challenges [Xie et al., 2022b] when the distribution of the new
task deviates from those considered in pretraining. Instead, our approach finetunes the model using multiple relevant
tasks. We empirically verify that doing so leads to better adaptation.
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Multitask Learning. Multitask supervised learning has been considered for transfer learning to a target task [Zhong
et al., 2021; Sanh et al., 2022; Chen et al., 2022b; Min et al., 2022b; Wang et al., 2023c]. Multitask has been shown to
induce zero-shot generalization in large language models [Sanh et al., 2022], and also enable parameter efficient tuning
by prompt tuning [Wang et al., 2023c]. My prior work (details in Chapter 3) leverages multitask learning to unlock
better zero-shot and few-shot performance of pretrained models. Min et al. [2022b]; Chen et al. [2022b] primarily focus
on in-context learning, Zhong et al. [2021] focuses on the idea of task conversion where transfer classification task
as question-answer format, our approach is based on utilizing original examples, in alignment with our theoretical
framework. A line of theoretical work provides the error bound of the target task in terms of sample complexity [Du
et al., 2021; Tripuraneni et al., 2021; Shi et al., 2023a; Xu et al., 2023]. Tripuraneni et al. [2020] established a framework
of multitask learning centered around the notion of task diversity for the training data. Their work mainly analyzed
representations from supervised pretraining using multitasks. In contrast, my prior work (details in Chapter 3) considers
representations from self-supervised pretraining, and focuses on multitask finetuning. Our approach and analysis
guarantee that limited but diverse and consistent finetuning task can improve the prediction performance on a target task
with novel classes.

Few-shot Learning and Meta Learning. Few-shot learning necessitates the generalization to new tasks with only
a few labeled samples [Wang et al., 2020; Vu et al., 2021; Murty et al., 2021; Liu et al., 2021; Yang et al., 2022;
Galanti et al., 2022]. Direct training with limited data is prone to overfitting. Meta learning offers a promising solution
that allows the model to adapt to the few-shot setting [Finn et al., 2017; Raghu et al., 2020]. This solution has been
previously developed for vision tasks [Vinyals et al., 2016; Snell et al., 2017; Chen et al., 2021b; Hu et al., 2022c].
Inspired by meta learning in the few-shot setting, our analysis extends the idea of multitask finetuning by providing
sound theoretic justifications and demonstrating strong empirical results. We further introduce a task selection algorithm
that bridges our theoretical findings with practical applications in multitask finetuning.

2.2 Compositional ability of LLMs

Large language model. LLMs are often Transformer-based [Vaswani et al., 2017] equipped with the enormous size of
parameters and pretrained on vast training data. Typical LLMs includes BERT [Devlin et al., 2019], PaLM [Chowdhery
et al., 2022], LLaMA[Touvron et al., 2023a], ChatGPT [OpenAI, 2022a], GPT4 [OpenAI, 2023]. Pretraining methods
include masked language modeling [Devlin et al., 2019; Liu et al., 2019], contrastive learning [Gao et al., 2021b; Shi
et al., 2023a; Sun et al., 2023c, 2024] and auto-regressive pretraining [Radford et al., 2018, 2019]. Several works
[Madasu and Srivastava, 2022; Alajrami et al., 2023] investigate the effects of pretraining on language models. Adapting
LLMs to various downstream tasks has received significant attention, e.g., adaptor [Hu et al., 2022a, 2023; Zhang
et al., 2023a; Luo et al., 2024], prompt tuning [Lester et al., 2021; Li and Liang, 2021; Wei et al., 2023a; Gu et al.,
2024c], multitask finetuning [Sanh et al., 2022; Wang et al., 2023c; Xu et al., 2023, 2024c], instruction tuning [Chung
et al., 2022; Mishra et al., 2022], in-context learning [Min et al., 2022c; Dong et al., 2022; Yao et al., 2023], low-rank
adaptation [Hu et al., 2022a; Zeng and Lee, 2024; Hu et al., 2024], reinforcement learning from human feedback
(RLHF) [Ouyang et al., 2022] and inference acceleration [Gu et al., 2024b,d; Xu et al., 2024a].

In-context learning. LLM exhibits a remarkable ability for in-context learning (ICL) [Brown et al., 2020], particularly
for generative models. Given a sequence of labeled examples and a testing example (combined as a prompt), the
model can construct new predictors for testing examples without further parameter updates. Several empirical studies
investigate the behavior of ICLs. Zhao et al. [2021]; Holtzman et al. [2021]; Lu et al. [2022] formulate the problems
and report the sensitivity. Rubin et al. [2022]; Liu et al. [2022]; Hongjin et al. [2023]; Wang et al. [2023b] provide
methods to better choose in-context learning examples. Chen et al. [2022a]; Min et al. [2022a] use meta training with an
explicit in-context learning object to boost performance. Theoretically, Xie et al. [2022a]; Garg et al. [2022] provide a
framework to explain the working mechanism of in-context learning. Von Oswald et al. [2023]; Akyürek et al. [2023];
Mahankali et al. [2023]; Zhang et al. [2023b], investigating with linear models, show how transformers can represent
gradient descent and conduct linear regression. Based on these works, we provide an analysis showing how LLM can
exhibit compositional ability in ICL.

Emergence of compositional ability. Scaling law was first proposed by Kaplan et al. [2020] and then followed up
by Hoffmann et al. [2022], emphasizing both the scale of models and training data. Sometimes, increasing scale can
lead to new behaviors of LLMs, termed emergent abilities [Wei et al., 2022a; Arora and Goyal, 2023], such as domain
generalization [Shi et al., 2024a], math reasoning [Gu et al., 2024a], spatial reasoning [Wang et al., 2024] and so on.
Recent works show LLMs with larger scales have distinct behavior compared to smaller language models [Wei et al.,
2023b; Shi et al., 2023d, 2024b]. These behaviors can have positive or negative effects on performance. Solving
complex tasks and reasoning is an active problem in the AI community [Huang and Chang, 2022]. There is a line
of empirical works investigating the compositional ability in linguistic fashion [Kim and Linzen, 2020; Levy et al.,
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2022; An et al., 2023a,b; Xu et al., 2024b]. LLMs are capable of learning abstract reasoning (e.g., grammar) to perform
new tasks when finetuned or given suitable in-context examples. In our prior work (details in Chapter 4), we include
linguistic experiments as part of our testing suite, illustrating LLMs’ compositional ability. Ye et al. [2023]; Berglund
et al. [2023]; Dziri et al. [2023] show LLMs will have difficulties solving tasks that require reasoning. Berglund et al.
[2023] studies that LLMs trained on “A is B” fail to learn “B is A”. In our work (details in Chapter 4), we conduct
similar experiments showing LLMs will fail on composite if different steps of logical rules are mixed.

2.3 Efficient Inference of multimodal LLMs (MLLMs)

Multimodal Large Language Models. With the success of LLMs, increasing research focus on extends LLMs from
pure text modality to other modalities such as image [Liu et al., 2023b], video [Li et al., 2024], and audio [Latif
et al., 2023]. Such development leads to the emergence of MLLMs, often involving combine vision encoders with
existing LLMs. Flamingo [Alayrac et al., 2022] inserts gated cross-attention dense blocks between vision encoder and
LLMs, align vision and language modality. BLIP2 [Li et al., 2023] introduce Q-former with two-stage pretraining,
bridge frozen image encoders and LLMs to enable visual instruction capability. LLaVA [Liu et al., 2023b,a] and
MiniGPT-4 [Zhu et al., 2024a] use simple MLP to connect vision embedding space and text token space and show
state-of-art performance on a variety of tasks. Our ongoing work (details in Chapter 5) builds on these developments
and aims to enable adaptive inference of MLLMs.

Adaptive Inference. Adaptive inference refers to the capability in which the computational complexity of making
predictions is dynamically adjusted based on the input data, latency budget, or desired accuracy levels [Han et al., 2021].
Early works focus on the selection of hand-crafted features in multi-stage prediction pipelines [Karayev et al., 2014; Xu
et al., 2012; Grubb and Bagnell, 2012]. More recent works have extended these ideas to deep models. For convolutional
networks, methods have been developed to downsample the input, skip layers or exist early during inference [Figurnov
et al., 2017; Li et al., 2021; Wang et al., 2018b; Bengio et al., 2015; Wu et al., 2018; Hu et al., 2019; Jie et al., 2019;
Meng et al., 2020]. For vision transformers, various approaches have been proposed to enhance efficiency, such as
selecting different patches of images [Wang et al., 2021; Rao et al., 2021; Pan et al., 2021], and using different attention
heads and blocks [Meng et al., 2022]. Similar ideas have also been explored for LLMs, where models selectively
process tokens [Raposo et al., 2024] or execute a subset of the operations [Du et al., 2022; Rotem et al., 2023] during
inference.

Our ongoing work (details in Chapter 5) builds upon these ideas by dynamically selecting a subset of model components
during inference. Unlike existing methods, our approach specifically targets the inference of MLLMs under latency
constraints, predicting feasible execution plans tailored for each input while adhering to varying budget budgets.

Efficient Inference for MLLMs. MLLMs face a major challenge in deployment, due to their high computational costs
during inference. Several recent works design lightweight model architectures to reduce the costs. Examples include
Phi-2 [Javaheripi et al., 2023], Tinygpt-v [Yuan et al., 2023] and LLaVA-ϕ [Zhu et al., 2024b].

Vary-toy [Wei et al., 2024] enhanced performance through specialized vision vocabulary in smaller models.
TinyLLaVA [Zhou et al., 2024] and LLaVA-OneVision [Li et al., 2024] learn small-scale models with better training data
and pipeline. MoE-LLaVA [Lin et al., 2024] and LLaVA-MoD [Shu et al., 2024] improve efficiency by incorporating
mixture-of-experts architectures and parameter sparsity techniques. Another line of research investigates the selection
of input tokens to improving efficiency. An input image or video can lead to a large number of vision tokens. To
address this, MADTP [Cao et al., 2024] and LLaVA-PruMerge [Shang et al., 2024] introduce token pruning and
merging technique to reduce the tokens counts. Pham et al. [Pham et al., 2024] propose to selectively disabling attention
mechanisms for visual tokens in MLLMs.

While our ongoing work (details in Chapter 5) also aims to improve the efficiency of MLLMs, it focuses dynamically
adjusting an MLLM to fit varying latency budget during inference. This makes our approach orthogonal to prior
efforts centered on developing inherently efficient MLLMs. Through our experiments, we will demonstrate that our
approach is compatible with smaller models and integrates seamlessly with existing token-pruning techniques e.g.,
LLaVA-PruMerge [Shang et al., 2024].
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Chapter 3

Few-Shot Adaptation via Multitask
Finetuning

3.1 Introduction

In this work, we focus on the problem of adapting a pretrained foundation model to a new task with a few labeled
samples, where the target task can differ significantly from pretraining and the limited labeled data are insufficient
for finetuning. This few-shot learning problem has been a long-standing challenge in machine learning [Wang et al.,
2020]. Prior approaches include learning from examples in the context prompt (in-context learning) [Brown et al.,
2020], constructing simple classifiers based on the pretrained representation [Zhang et al., 2020], or finetuning the
model using text prompts converted from labeled data [Gao et al., 2021a]. An emerging solution involves finetuning a
pretrained model on multiple auxiliary tasks pertaining to the target task. This multitask finetuning approach, related to
meta learning [Hospedales et al., 2021], has been recently explored in NLP and vision [Murty et al., 2021; Vu et al.,
2021; Zhong et al., 2021; Hu et al., 2022c; Chen et al., 2022b; Min et al., 2022b]. For example, latest studies [Sanh
et al., 2022; Muennighoff et al., 2023] show that finetuning language models on a large set of tasks enables strong
zero-shot generalization on unseen tasks. Nonetheless, the lack of sound theoretical explanations behind these previous
approaches raises doubts about their ability to generalize on real-world tasks [Perez et al., 2021].

To bridge the gap, we study the theoretical justification of multitask finetuning. We consider an intermediate step that
finetunes a pretrained model with a set of relevant tasks before adapting to a target task. Each of these auxiliary tasks
might have a small number of labeled samples, and categories of these samples might not overlap with those on the
target task. Our key intuition is that a sufficiently diverse set of relevant tasks can capture similar latent characteristics
as the target task, thereby producing meaningful representation and reducing errors in the target task. To this end, we
present rigorous theoretical analyses, provide key insight into conditions necessary for successful multitask finetuning,
and introduce a novel algorithm for selecting tasks suitable for finetuning.

Our key contributions are three folds. Theoretically, we present a framework for analyzing pretraining followed by
multitask finetuning. Our analysis (Section 3.3) reveals that with limited labeled data from diverse tasks, finetuning can
improve the prediction performance on a downstream task. Empirically, we perform extensive experiments on both
vision and language tasks (Section 3.4) to verify our theorem. Our results suggest that our theorem successfully predicts
the behavior of multitask finetuning across datasets and models. Practically, inspired by our theorem, we design a task
selection algorithm for multitask finetuning. On the Meta-Dataset [Triantafillou et al., 2020], our algorithm shows
significantly improved results in comparison to finetuning using all possible tasks.

3.2 Background: Multitask Finetuning for Few-Shot Learning

This section reviews the pretraining of foundation models and adaptation for few-shot learning, and then formalizes the
multitask finetuning approach.

Pretraining Foundation Models. We consider three common pretraining methods: contrastive learning, masked
language modeling, and supervised pretraining. Contrastive learning is widely considered in vision and multi-modal
tasks. This approach pretrains a model ϕ from a hypothesis class Φ of foundation models via loss on contrastive pairs
generated from data points x. First sample a point x and then apply some transformation to obtain x+; independently
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sample another point x−. The population contrastive loss is then Lcon−pre(ϕ) := E
[
ℓu
(
ϕ(x)⊤ (ϕ(x+)− ϕ(x−))

)]
,

where the loss function ℓu is a non-negative decreasing function. In particular, logistic loss ℓu(v) = log (1 + exp (−v))
recovers the typical contrastive loss in most empirical work [Logeswaran and Lee, 2018; Oord et al., 2018; Chen
et al., 2020]. Masked language modeling is a popular self-supervised learning approach in NLP. It can be regarded
as a kind of supervised pretraining: the masked word is viewed as the class (see Section 8.2 for more details). In
what follows we provide a unified formulation. On top of the representation function ϕ, there is a linear function
f ∈ F ⊂

{
Rd → RK

}
predicting the labels where K is the number of classes. The supervised loss is: Lsup−pre(ϕ) :=

minf∈F E [ℓ (f ◦ ϕ(x), y)], where ℓ(·, y) is the cross-entropy loss. To simplify the notation, we unify Lpre(ϕ) as the
pretraining loss.

Adapting Models for Few-shot Learning. A pretrained foundation model ϕ can be used for downstream target tasks
T by learning linear classifiers on ϕ. We focus on binary classification (the general multiclass setting is in Section 8.3).
A linear classifier on ϕ is given by w⊤ϕ(x) where w ∈ Rd. The supervised loss of ϕ w.r.t the task T is then:

Lsup(T , ϕ) := min
w

E
(x,y)∼DT

[
ℓ
(
w⊤ϕ(x), y

)]
, (3.1)

where DT (x, y) is the distribution of data (x, y) in task T . In few-shot learning with novel classes, there are limited
labeled data points for learning the linear classifier. Further, the target task T0 may contain classes different from those
in pretraining. We are interested in obtaining a model ϕ such that Lsup(T0, ϕ) is small.

Multitask Finetuning. In the challenging setting of few-shot learning, the data in the target task is limited. On the
other hand, we can have prior knowledge of the target task characteristics and its associated data patterns, and thus
can collect additional data from relevant and accessible sources when available. Such data may cover the patterns in
target task and thus can be used as auxiliary tasks to finetune the pretrained model before adaptation to the target task.
Here we formalize this idea in a general form and provide analysis in later sections. Formally, suppose we have M
auxiliary tasks {T1, T2, . . . , TM}, each with m labeled samples Si := {(xi

j , y
i
j) : j ∈ [m]}. The finetuning data are

S := ∪i∈[M ]Si. Given a pretrained model ϕ̂, we further finetune it using the objective:

min
ϕ∈Φ

1

M

M∑
i=1

L̂sup(Ti, ϕ), where L̂sup(Ti, ϕ) := min
wi∈Rd

1

m

m∑
j=1

ℓ(w⊤
i ϕ(x

i
j), y

i
j). (3.2)

This can be done via gradient descent from the initialization ϕ̂ (see Algorithm 2 in the Appendix). Multitask finetuning is
conceptually simple, and broadly applicable to different models and datasets. While its effectiveness has been previously
demonstrated [Murty et al., 2021; Vu et al., 2021; Zhong et al., 2021; Hu et al., 2022c; Chen et al., 2022b; Min et al.,
2022b; Sanh et al., 2022; Muennighoff et al., 2023], the theoretical justification remains to be fully investigated and
understood.

3.3 Theoretical Analysis: Benefit of Multitask Finetuning

To understand the potential benefit of multitask finetuning, we will compare the performance of ϕ̂ (from pretraining)
and ϕ′ (from pretraining and multitask finetuning) on a target task T0. That is, we will compare Lsup(T0, ϕ̂) and
Lsup(T0, ϕ′), where Lsup(T , ϕ) is the population supervised loss of ϕ on the task T defined in Eq. 3.1. For the analysis,
we first formalize the data distributions and learning models, then introduce the key notions, and finally present the key
theorems.

Data Distributions. LetX be the input space andZ ⊆ Rd be the output space of the foundation model. Following Arora
et al. [2019], suppose there is a set of latent classes C with |C| = K, and a distribution η over the classes; each class
y ∈ C has a distribution D(y) over inputs x. In pretraining using contrastive learning, the distribution Dcon(η) of the
contrastive data (x, x+, x−) is given by: (y, y−) ∼ η2 and x, x+ ∼ D(y), x− ∼ D(y−). In masked self-supervised or
fully supervised pretraining, (x, y) is generated by y ∼ η, x ∼ D(y). In a task T with binary classes {y1, y2}, the data
distribution DT (x, y) is by first uniformly drawing y ∈ {y1, y2} and then drawing x ∼ D(y). Finally, let ζ denote the
conditional distribution of (y1, y2) ∼ η2 conditioned on y1 ̸= y2, and suppose the tasks in finetuning are from ζ. Note
that in few-shot learning with novel classes, the target task’s classes may not be the same as those in the pretraining. Let
C0 be the set of possible classes in the target task, which may or may not overlap with C.

Learning Models. Recall that Φ is the hypothesis class of foundation models ϕ : X → Z . To gauge the generalization
performance, let ϕ∗ ∈ Φ denote the model with the lowest target task loss Lsup(T0, ϕ∗) and ϕ∗

ζ ∈ Φ denote the model
with the lowest average supervised loss over the set of auxiliary tasks Lsup(ϕ

∗
ζ) := ET ∼ζ [Lsup(T , ϕ∗

ζ)]. Note that if
all ϕ ∈ Φ have high supervised losses, we cannot expect the method to lead to a good generalization performance, and
thus we need to calibrate w.r.t. ϕ∗ and ϕ∗

ζ . We also need some typical regularity assumptions.

9
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Assumption 3.3.1 (Regularity Assumptions). ∥ϕ∥2 ≤ R and linear operator ∥w∥2 ≤ B. The loss ℓu is bounded in
[0, C] and L-Lipschitz. The supervised loss Lsup(T , ϕ) is L̃-Lipschitz with respect to ϕ.

Diversity and Consistency. Central to our theoretical analysis lies in the definitions of diversity in auxiliary tasks used
for finetuning and their consistency with the target task.

Definition 3.3.2 (Diversity). The averaged representation difference for two model ϕ, ϕ̃ on a distribution ζ over
tasks is d̄ζ(ϕ, ϕ̃) := E

T ∼ζ

[
Lsup(T , ϕ)− Lsup(T , ϕ̃)

]
= Lsup(ϕ)−Lsup(ϕ̃). The worst-case representation difference

between representations ϕ, ϕ̃ on the family of classes C0 is dC0
(ϕ, ϕ̃) := supT0⊆C0

∣∣∣Lsup(T0, ϕ)− Lsup(T0, ϕ̃)
∣∣∣ . We

say the model class Φ has ν-diversity (for ζ and C0) with respect to ϕ∗
ζ , if for any ϕ ∈ Φ, dC0

(ϕ, ϕ∗
ζ) ≤ d̄ζ(ϕ, ϕ

∗
ζ)/ν.

Such diversity notion has been proposed and used to derive statistical guarantees (e.g., Tripuraneni et al. [2020]; Zhao
et al. [2023]). Intuitively, diversity measures whether the data from ζ covers the characteristics of the target data in C0,
e.g., whether the span of the linear mapping solutions w’s for tasks from ζ can properly cover the solutions for tasks
from C0 [Zhao et al., 2023]. Existing work showed that diverse pretraining data will lead to a large diversity parameter
ν and can improve the generalization in the target task. Our analysis will show the diversity in finetuning tasks from ζ
can benefit the performance of a target task from C0.

Definition 3.3.3 (Consistency). We say the model class Φ has κ-consistency (for ζ and C0) with respect to ϕ∗ and ϕ∗
ζ ,

where κ := supT0⊆C0

[
Lsup(T0, ϕ∗

ζ)− Lsup(T0, ϕ∗)
]
.

This consistency notion measures the similarity between the data in tasks from ζ and the data in the target task from
C0. Intuitively, when the tasks from ζ are similar to the target task T0, their solutions ϕ∗

ζ and ϕ∗ will be similar to each
other, resulting in a small κ. Below we will derive guarantees based on the diversity ν and consistency κ to explain the
gain from multitask finetuning.

Key Results. We now present the results for a uniform distribution η, and include the full proof and results for general
distributions in Section 8.2 and Section 8.3. Recall that we will compare the performance of ϕ̂ (the model from
pretraining) and ϕ′ (the model from pretraining followed by multitask finetuning) on a target task T0. For ϕ̂ without
multitask finetuning, we have:

Theorem 3.3.4. (No Multitask Finetuning) Assume Assumption 3.3.1 and that Φ has ν-diversity and
κ-consistency with respect to ϕ∗ and ϕ∗

ζ . Suppose ϕ̂ satisfies L̂pre(ϕ̂) ≤ ϵ0. Let τ := Pr
(y1,y2)∼η2

{y1 = y2}.

Then for any target task T0 ⊆ C0,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
2ϵ0
1− τ

− Lsup(ϕ
∗
ζ)

]
+ κ. (3.3)

In Theorem 3.3.4, L̂pre(ϕ) is the empirical loss of Lpre(ϕ) with pretraining sample size N . We now con-
sider ϕ′ obtained by multitask finetuning. Define the subset of models with pretraining loss smaller than
ϵ̃ as Φ(ϵ̃) :=

{
ϕ ∈ Φ : L̂pre(ϕ) ≤ ϵ̃

}
. Recall the Rademacher complexity of Φ on n points is Rn(Φ) :=

E
{σj}n

j=1,{xj}n
j=1

[
supϕ∈Φ

∑n
j=1 σjϕ(xj)

]
.

Theorem 3.3.5 below showing that the target prediction performance of the model ϕ′ from multitask finetuning can be
significantly better than that of ϕ̂ without multitask finetuning. In particular, achieves an error reduction 1

ν

[
(1− α) 2ϵ0

1−τ

]
.

The reduction is achieved when multitask finetuning is solved to a small loss ϵ1 for a small α on sufficiently many
finetuning data.
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Theorem 3.3.5. (With Multitask Finetuning) Assume Assumption 3.3.1 and that Φ has ν-diversity and
κ-consistency with respect to ϕ∗ and ϕ∗

ζ . Suppose for some constant α ∈ (0, 1), we solve Eq. 3.2 with

empirical loss lower than ϵ1 = α
3

2ϵ0
1−τ and obtain ϕ′. For any δ > 0, if for ϵ̃ = L̂pre(ϕ

′),

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
16LBRMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

then with probability 1− δ, for any target task T0 ⊆ C0,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν

[
α

2ϵ0
1− τ

− Lsup(ϕ
∗
ζ)

]
+ κ. (3.4)

The requirement is that the number of tasks M and the total number of labeled samples Mm across tasks are sufficiently
large. This implies when M is above the threshold, the total size Mm determines the performance, and increasing
either M or m while freezing the other can improve the performance. We shall verify these findings in our experiments
(Section 3.4.1).

Theorem 3.3.5 also shows the conditions for successful multitask finetuning, in particular, the impact of the diversity and
consistency of the finetuning tasks. Besides small finetuning loss on sufficiently many data, a large diversity parameter
ν and a small consistency parameter κ will result in a small target error bound. Ideally, data from the finetuning tasks
should be similar to those from the target task, but also sufficiently diverse to cover a wide range of patterns that may be
encountered in the target task. This inspires us to perform finer-grained analysis of diversity and consistency using a
simplified data model (Section 3.3.1), which sheds light on the design of an algorithm to select a subset of finetuning
tasks with better performance (Section 3.3.2).

3.3.1 Case Study of Diversity and Consistency

Our main results, rooted in notions of diversity and consistency, state the general conclusion of multitask finetuning
on downstream tasks. A key remaining question is how relevant tasks should be selected for multitask finetuning in
practice. Our intuition is that this task selection should promote both diversity (encompassing the characteristics of the
target task) and consistency (focusing on the relevant patterns in achieving the target task’s objective). To illustrate
such theoretical concepts and connect them to practical algorithms, we specialize the general conclusion to settings that
allow easy interpretation of diversity and consistency. In this section, we provide a toy linear case study and we put the
proof and also the analysis of a more general setting in Section 8.4, e.g., more general latent class C, C0, more general
distribution ζ, input data with noise.

In what follows, we specify the data distributions and function classes under consideration, and present an analysis for
this case study. Our goal is to explain the intuition behind diversity and consistency notions: diversity is about coverage,
and consistency is about similarity in the latent feature space. This can facilitate the design of task selection algorithms.

kc d-kc

C

C0

1 1 1 1 1 1 1 -1

.

.

.

1 1 1 1 1 1 -1 1

1 1 1 1 1 -1 1 1

-1 1 1 1 1 1 1 1

0 00 . . .

0 00 . . .

0 00 . . .

0 00 . . .

0 0 0 0 0 0 0 1 0 00 . . .

0 0 0 0 0 0 0 -1 0 00 . . .

T1

T2

T3

TM

T0

.

.

.

Figure 3.1: Illustration of features in linear data. Blue are
the features encoded in C while red is not.

Linear Data and Tasks. Inspired by classic dictionary
learning and recent analysis on representation learning [Wen
and Li, 2021; Shi et al., 2023a], we consider the latent
class/representation setting where each latent class z ∈
{0,−1,+1}d is represented as a feature vector. We fo-
cus on individual binary classification tasks, where Y =
{−1,+1} is the label space. Thus, each task has two la-
tent classes z, z′ (denote the task as Tz,z′) and we randomly
assign −1 and +1 to each latent class. Namely, Tz,z′ is

defined as: x =

{
z, if y = −1
z′, if y = +1

. We show a diagram

in Figure 3.1, we denote each task containing two latent
classes, namely (z, z′). Each task in diagram can be rep-
resented as (T1 to Tz1,z′

1
, T2 to Tz2,z′

2
). We further assume a balanced class setting in all tasks, i.e., p(y =

−1) = p(y = +1) = 1
2 . Now, we define the latent classes seen in multitask finetuning tasks: C ={

(1, 1, . . . , 1, 1,−1︸ ︷︷ ︸
kC

, 0, . . . , 0︸ ︷︷ ︸
d−kC

)⊤, (1, 1, . . . , 1,−1, 1︸ ︷︷ ︸
kC

, 0, . . . , 0︸ ︷︷ ︸
d−kC

)⊤, . . . , (−1, 1, . . . , 1, 1, 1︸ ︷︷ ︸
kC

, 0, . . . , 0︸ ︷︷ ︸
d−kC

)⊤

}
. Note that their

feature vectors only encode the first kC features, and |C| = kC . We let C0 := {z(1), z(2)} ⊆ {0,−1,+1}d which is

11



Adaptation of Foundation Models

used for the target task, and assume that z(1) and z(2) only differ in 1 dimension, i.e., the target task can be done using
this one particular dimension. Let ζ be a distribution uniformly sampling two different latent classes from C. Then, our
data generation pipeline for getting a multitask finetuning task is (1) sample two latent classes (z, z′) ∼ ζ; (2) assign
label −1,+1 to two latent classes.

Linear Model and Loss Function. We consider a linear model class with regularity Assumption 3.3.1, i.e., Φ = {ϕ ∈
Rd×d : ∥ϕ∥F ≤ 1} and linear head w ∈ Rd where ∥w∥2 ≤ 1. Thus, the final output of the model and linear head is
w⊤ϕx. We use the loss in Shi et al. [2023a], i.e., ℓ

(
w⊤ϕx, y

)
= −yw⊤ϕx.

Remark 3.3.1. Although we have linear data, linear model, and linear loss, Lsup(ϕ) is a non-linear function on ϕ as
the linear heads are different across tasks, i.e., each task has its own linear head.

Now we can link our diversity and consistency to features encoded by training or target tasks.

Theorem 3.3.6 (Diversity and Consistency). If C encodes the feature in C0, i.e., the different entry dimension of
z(1) and z(2) in C0 is in the first kC dimension, then we have ν is lower bounded by constant c̃ ≥ 2

√
2−2

kC−1 and

κ ≤ 1−
√

1
kC

. Otherwise, we have ν → 0 and κ ≥ 1.

Theorem 3.3.6 establishes c̃-diversity and κ-consistency in Definition 3.3.2 and Definition 3.3.3. The analysis shows
that diversity can be intuitively understood as the coverage of the finetuning tasks on the target task in the latent feature
space: If the key feature dimension of the target task is covered by the features encoded by finetuning tasks, then
we have lower-bounded diversity ν; if not covered, then the diversity ν tends to 0 (leading to vacuous error bound in
Theorem 3.3.5). Also, consistency can be intuitively understood as similarity in the feature space: when kC is small, a
large fraction of the finetuning tasks are related to the target task, leading to a good consistency (small κ); when kC
is large, we have less relevant tasks, leading to a worse consistency. Such an intuitive understanding of diversity and
consistency will be useful for designing practical task selection algorithms.

3.3.2 Task Selection

T0

T6

T2T4

T3T1

T5

T7

T9

T8
Coverage Boundary

Figure 3.2: Illustration of the similarity and coverage.
Target tasks (T0) with the most similar tasks in yellow and
the rest in blue. The ellipsoid spanned by yellow tasks is the
coverage for the target task. Adding more tasks in blue to
the ellipsoid does not increase the coverage boundary.

Our analysis suggests that out of a pool of candidate tasks, a
subset S with good consistency (i.e., small κ) and large diversity
(i.e., large ν) will yield better generalization to a target task.
To realize this insight, we present a greedy selection approach,
which sequentially adds tasks with the best consistency, and
stops when there is no significant increase in the diversity of the
selected subset. In doing so, our approach avoids enumerating
all possible subsets and thus is highly practical.

A key challenge is to compute the consistency and diversity of
the data. While the exact computation deems infeasible, we turn
to approximations that capture the key notions of consistency
and diversity. We show a simplified diagram for task selection
in Figure 3.2. Specifically, given a foundation model ϕ, we
assume any task data T = {xj} follows a Gaussian distribution
in the representation space: let ϕ(T ) = {ϕ(xj)} denote the
representation vectors obtained by applying ϕ on the data points
in T ; compute the sample mean µT and covariance CT for ϕ(T ), and view it as the Gaussian N (µT , CT ). Further,
following the intuition shown in the case study, we simplify consistency to similarity: for the target task T0 and a
candidate task Ti, if the cosine similarity

CosSim(T0, Ti) := µ⊤
T0
µTi

/(∥µT0
∥2∥µTi

∥2) is large, we view Ti as consistent with T0. Next, we simplify diversity to
coverage: if a dataset D (as a collection of finetuning tasks) largely “covers” the target data T0, we view D as diverse
for T0. Regarding the task data as Gaussians, we note that the covariance ellipsoid of D covers the target data µT0

iff
(µD − µT0

)TC−1
D (µD − µT0

) ≤ 1. This inspires us to define the following coverage score as a heuristic for diversity:
coverage(D; T0) := 1/(µD − µT0

)⊤C−1
D (µD − µT0

).

Using these heuristics, we arrive at the following selection algorithm: sort the candidate task in descending order of
their cosine similarities to the target data; sequentially add tasks in the sorted order to L until coverage(L; T0) has no
significant increase. Algorithm 1 illustrates this key idea.
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Algorithm 1 Consistency-Diversity Task Selection

Require: Target task T0, candidate finetuning tasks: {T1, T2, . . . , TM}, model ϕ, threshold p.
1: Compute ϕ(Ti) and µTi for i = 0, 1, . . . ,M .
2: Sort Ti’s in descending order of similarity (T0, Ti). Denote the sorted list as {T ′

1 , T ′
2 , . . . , T ′

M}.
3: L← {T ′

1}
4: for i = 2, . . . ,M do
5: If coverage(L ∪ T ′

i ; T0) ≥ (1 + p) · coverage(L; T0), then L← L ∪ T ′
i ; otherwise, break.

6: end for
Ensure: selected data L for multitask finetuning.

3.4 Experiments

We now present our main results, organized in three parts. Section 3.4.1 explores how different numbers of finetuning
tasks and samples influence the model’s performance, offering empirical backing to our theoretical claims. Section 3.4.2
investigates whether our task selection algorithm can select suitable tasks for multitask finetuning. Section 3.4.3
provides a more extensive exploration of the effectiveness of multitask finetuning on various datasets and pretrained
models. We defer other results to the appendix. Specifically, Section 8.5.4 shows that better diversity and consistency of
finetuning tasks yield improved performance on target tasks under same sample complexity. Section 8.5.4 shows that
finetuning tasks satisfying diversity yet without consistency lead to no performance gain even with increased sample
complexity. Further, Section 8.6 and Section 8.7 present additional experiments using NLP and vision-language models,
respectively.

Experimental Setup. We use four few-shot learning benchmarks: miniImageNet [Vinyals et al., 2016], tieredImageNet
[Ren et al., 2018], DomainNet [Peng et al., 2019] and Meta-dataset [Triantafillou et al., 2020]. We use foundation models
with different pretraining schemes (MoCo-v3 [Chen et al., 2021a], DINO-v2 [Oquab et al., 2023], and supervised
learning with ImageNet [Russakovsky et al., 2015]) and architectures (ResNet [He et al., 2016] and ViT [Dosovitskiy
et al., 2021]). We consider few-shot tasks consisting of N classes with K support samples and Q query samples per
class (known as N -way K-shot). The goal is to classify the query samples based on the support samples. Tasks used
for finetuning are constructed by samples from the training split. Each task is formed by randomly sampling 15 classes,
with every class drawing 1 or 5 support samples and 10 query samples. Target tasks are similarly constructed from the
test set. We follow [Chen et al., 2021b] for multitask finetuning and target task adaptation. During multitask finetuning,
we update all parameters in the model using a nearest centroid classifier, in which all samples are encoded, class
centroids are computed, and cosine similarity between a query sample and those centroids are treated as the class logits
For adaptation to a target task, we only retain the model encoder and consider a similar nearest centroid classifier. This
multitask finetuning protocol applies to all experiments (Sections 3.4.1 to 3.4.3). We provide full experimental set up in
Section 8.5.

3.4.1 Verification of Theoretical Analysis

1 2 3 4
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Figure 3.3: Results on ViT-B backbone pretrained by MoCo v3. (a) Accuracy v.s. number of shots per finetuning task. Different
curves correspond to different total numbers of samples Mm. (b) Accuracy v.s. the number of tasks M . Different curves correspond
to different numbers of samples per task m. (c) Accuracy v.s. number of samples per task m. Different curves correspond to different
numbers of tasks M .
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Pretrained Selection INet Omglot Acraft CUB QDraw Fungi Flower Sign COCO
CLIP Random 56.29 65.45 31.31 59.22 36.74 31.03 75.17 33.21 30.16

No Con. 60.89 72.18 31.50 66.73 40.68 35.17 81.03 37.67 34.28
No Div. 56.85 73.02 32.53 65.33 40.99 33.10 80.54 34.76 31.24
Selected 60.89 74.33 33.12 69.07 41.44 36.71 80.28 38.08 34.52

DINOv2 Random 83.05 62.05 36.75 93.75 39.40 52.68 98.57 31.54 47.35
No Con. 83.21 76.05 36.32 93.96 50.76 53.01 98.58 34.22 47.11
No Div. 82.82 79.23 36.33 93.96 55.18 52.98 98.59 35.67 44.89
Selected 83.21 81.74 37.01 94.10 55.39 53.37 98.65 36.46 48.08

MoCo v3 Random 59.66 60.72 18.57 39.80 40.39 32.79 58.42 33.38 32.98
No Con. 59.80 60.79 18.75 40.41 40.98 32.80 59.55 34.01 33.41
No Div. 59.57 63.00 18.65 40.36 41.04 32.80 58.67 34.03 33.67
Selected 59.80 63.17 18.80 40.74 41.49 33.02 59.64 34.31 33.86

Table 3.1: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone. No Con.: Ignore consistency. No
Div.: Ignore diversity. Random: Ignore both consistency and diversity.

We conduct experiments on the tieredImageNet dataset to confirm the key insight from our theorem — the impact of
the number of finetuning tasks (M ) and the number of samples per task (m).

Results. We first investigate the influence of the number of shots. We fix the target task as a 1-shot setting but vary
the number of shots from 1 to 4 in finetuning, and vary the total sample size Mm = [10k, 20k, 40k]. The results in
Figure 3.3a show no major change in accuracy with varying the number of shots in finetuning. It is against the common
belief that meta-learning like Prototypical Networks [Snell et al., 2017] has to mimic the exact few-shot setting and
that a mismatch will hurt the performance. The results also show that rather than the number of shots, the total sample
size Mm determines the performance, which is consistent with our theorem. We next investigate the influence of
M and m. We vary the number of tasks (M = [200, 400, 600, 800]) and samples per task (m = [150, 300, 450, 600])
while keeping all tasks have one shot sample. Figure 3.3b shows increasing M with fixed m improves accuracy,
and Figure 3.3c shows increasing m with fixed M has similar behavior. Furthermore, different configurations of
M and m for the same total sample size Mm have similar performance (e.g., M = 400,m = 450 compared to
M = 600,m = 300 in Figure 3.3b). These again align with our theorem.

3.4.2 Task Selection

Setup. To evaluate our task selection Algorithm 1, we use the Meta-Dataset [Triantafillou et al., 2020]. It contains 10
extensive public image datasets from various domains, each partitioned into train/val/test splits. For each dataset except
Describable Textures due to small size, we conduct an experiment, where the test-split of that dataset is used as the target
task while the train-split from all the other datasets are used as candidate finetuning tasks. Each experiment follows the
experiment protocol in Section 3.4. We performed ablation studies on the task selection algorithm, concentrating on
either consistency or diversity, while violating the other. See details in Section 8.5.4.

Results. Table 3.1 compares the results from finetuning with tasks selected by our algorithm to those from finetuning
with tasks selected by other methods. Our algorithm consistently attains performance gains. For instance, on Omniglot,
our algorithm leads to significant accuracy gains over random selection of 8.9%, 19.7%, and 2.4% with CLIP, DINO v2,
and MoCo v3, respectively. Violating consistency or diversity conditions generally result in a reduced performance
compared to our approach. These results are well aligned with our expectations and affirm our diversity and consistency
conclusions. We provide more ablatioin study on task selection in Table 8.7 in Section 8.5.4. We also apply task
selection algorithm on DomainNet in Section 8.5.5. Furthermore, in Section 8.6, we employ our algorithm for NLP
models on the GLUE dataset.

3.4.3 Effectiveness of Multitask Finetuning

Setup. We also conduct more extensive experiments on large-scale datasets across various settings to confirm the
effectiveness of multitask finetuning. We compare to two baselines: direct adaptation where we directly adapt pretrained
model encoder on target tasks without any finetuning, and standard finetuning where we append encoder with a linear
head to map representations to class logits and finetune the whole model. During testing, we removed the linear layer
and used the same few-shot testing process with the finetuned encoders. Please refer Table 8.12 in Section 8.5.8 for full
results.
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miniImageNet tieredImageNet DomainNet
pretrained backbone method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MoCo v3 ViT-B Adaptation 75.33 (0.30) 92.78 (0.10) 62.17 (0.36) 83.42 (0.23) 24.84 (0.25) 44.32 (0.29)
Standard FT 75.38 (0.30) 92.80 (0.10) 62.28 (0.36) 83.49 (0.23) 25.10 (0.25) 44.76 (0.27)
Ours 80.62 (0.26) 93.89 (0.09) 68.32 (0.35) 85.49 (0.22) 32.88 (0.29) 54.17 (0.30)

ResNet50 Adaptation 68.80 (0.30) 88.23 (0.13) 55.15 (0.34) 76.00 (0.26) 27.34 (0.27) 47.50 (0.28)
Standard FT 68.85 (0.30) 88.23 (0.13) 55.23 (0.34) 76.07 (0.26) 27.43 (0.27) 47.65 (0.28)
Ours 71.16 (0.29) 89.31 (0.12) 58.51 (0.35) 78.41 (0.25) 33.53 (0.30) 55.82 (0.29)

DINO v2 ViT-S Adaptation 85.90 (0.22) 95.58 (0.08) 74.54 (0.32) 89.20 (0.19) 52.28 (0.39) 72.98 (0.28)
Standard FT 86.75 (0.22) 95.76 (0.08) 74.84 (0.32) 89.30 (0.19) 54.48 (0.39) 74.50 (0.28)
Ours 88.70 (0.22) 96.08 (0.08) 77.78 (0.32) 90.23 (0.18) 61.57 (0.40) 77.97 (0.27)

ViT-B Adaptation 90.61 (0.19) 97.20 (0.06) 82.33 (0.30) 92.90 (0.16) 61.65 (0.41) 79.34 (0.25)
Standard FT 91.07 (0.19) 97.32 (0.06) 82.40 (0.30) 93.07 (0.16) 61.84 (0.39) 79.63 (0.25)
Ours 92.77 (0.18) 97.68 (0.06) 84.74 (0.30) 93.65 (0.16) 68.22 (0.40) 82.62 (0.24)

Supervised ViT-B Adaptation 94.06 (0.15) 97.88 (0.05) 83.82 (0.29) 93.65 (0.13) 28.70 (0.29) 49.70 (0.28)
pretraining Standard FT 95.28 (0.13) 98.33 (0.04) 86.44 (0.27) 94.91 (0.12) 30.93 (0.31) 52.14 (0.29)
on ImageNet Ours 96.91 (0.11) 98.76 (0.04) 89.97 (0.25) 95.84 (0.11) 48.02 (0.38) 67.25 (0.29)

ResNet50 Adaptation 81.74 (0.24) 94.08 (0.09) 65.98 (0.34) 84.14 (0.21) 27.32 (0.27) 46.67 (0.28)
Standard FT 84.10 (0.22) 94.81 (0.09) 74.48 (0.33) 88.35 (0.19) 34.10 (0.31) 55.08 (0.29)
Ours 87.61 (0.20) 95.92 (0.07) 77.74 (0.32) 89.77 (0.17) 39.09 (0.34) 60.60 (0.29)

Table 3.2: Results of few-shot image classification. We report average classification accuracy (%) with 95% confidence intervals
on test splits. Adaptation: Direction adaptation without finetuning; Standard FT: Standard finetuning; Ours: Our multitask finetuning;
1-/5-shot: number of labeled images per class in the target task.

Results. Table 3.2 presents the results for various pretraining and finetuning methods, backbones, datasets, and few-shot
learning settings. Multitask finetuning consistently outperforms the baselines in different settings. For example, in the
most challenging setting of 1-shot on DomainNet, it attains a major gain of 7.1% and 9.3% in accuracy over standard
finetuning and direct adaptation, respectively, when considering self-supervised pretraining with DINO v2 and using a
Transformer model (ViT-S).

Interestingly, multitask finetuning achieves more significant gains for models pretrained with supervised learning than
those pretrained with contrastive learning. For example, on DomainNet, multitask finetuning on supervised pretrained
ViT-B achieves a relative gain of 67% and 35% for 1- and 5-shot, respectively. In contrast, multitask finetuning on
DINO v2 pretrained ViT-B only shows a relative gain of 10% and 4%. This suggests that models from supervised
pretraining might face a larger domain gap than models from DINO v2, and multitask finetuning helps to bridge this
gap.

3.5 Conclusions

In this work, we studied the theoretical justification of multitask finetuning for adapting pretrained foundation models
to downstream tasks with limited labels. Our analysis shows that, given sufficient sample complexity, finetuning using a
diverse set of pertinent tasks can improve the performance on the target task. This claim was examined in our theoretical
framework and substantiated by the empirical evidence accumulated throughout our study. Built on this theoretical
insight, we further proposed a practical algorithm for selecting tasks for multitask finetuning, leading to significantly
improved results when compared to using all possible tasks.

This work directly addresses the first challenge outlined in our thesis: efficiently adapting foundation models with limited
labeled data. By providing theoretical foundations and practical algorithms for multitask finetuning, we contribute to
transforming generalist models into task-specific experts more efficiently. These insights lay the groundwork for our
ongoing investigations into model adaptation mechanisms, particularly in understanding how knowledge transfer occurs
across tasks and how we can leverage this understanding to develop more effective adaptation techniques.
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Chapter 4

Understanding Compositional Abilities

4.1 Introduction

While our theoretical analysis of multitask finetuning provides insights into how foundation models adapt to new tasks,
it raises important questions about these models’ fundamental reasoning capabilities. Particularly, understanding how
these models combine knowledge from different tasks leads us to examine their compositional abilities.

LLMs have revolutionized the natural language processing (NLP) and general AI community. Recent advances have
shown success in various fields. As model scale increases, larger models exhibit new behavior known as emergence
ability. One remarkable emergence is the in-context learning ability (ICL) [Brown et al., 2020], where a model can
solve new tasks given only a few examples as input, without any parameter updates. However, despite recent success,
how LLMs solve complex reasoning tasks, particularly not seen in pre-training, remains an open question and largely
lacks understanding.

In this paper, we focus on the problem of how LLMs tackle composite tasks that incorporate multiple simple tasks.
Specifically, we investigate whether a model trained and in-context learned on individual tasks can effectively integrate
these skills to tackle combined challenges, which are intuitive and simple for humans. For instance, in Figure 4.1, if a
human is given examples where words following an asterisk (*) will be capitalized and words surrounded by parenthesis
will be permuted, one can also understand words following an asterisk (*) surrounded by parenthesis will be capitalized
and permuted simultaneously. This basic generalization seems trivial, yet we observe that LLMs fail to generalize in
this way.

Compositional ability is an active problem in the AI community and is crucial for advancing Artificial General
Intelligence (AGI). Recent studies have made significant contributions to the understanding of this area. Dziri et al.
[2023] formulate compositional tasks as computation graphs to quantify each task’s complexity level. Power et al. [2022]

Just give me output.
input: * apple
output: APPLE
input: * bird

output: BIRD

Just give me output.
input: ( ball book )
output: book ball
input: ( house hat )

output: hat house

Just give me output.

input: * toe

output: TOE

input: (farm frog)

output: frog farm

input: ( * pie * sports ) 

output: sports * pie *

Simple tasks Composite task

Figure 4.1: Inconsistent performance in GPT-4. Consider two simple tasks: If a word is followed by an asterisk (*), capitalize
the letter. If two words are surrounded by parentheses, swap the positions. GPT-4 correctly solves two simple tasks based on
demonstrations (left). The composite tasks have test inputs with both asterisk (*) and parenthesis. The correct answer should be
output: SPORTS PIE. However, GPT-4 fails to solve the composite tasks (right). The same failure was observed in Claude 3.
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show that models may develop generalization capabilities when trained extensively, beyond the point of overfitting,
highlighting a phenomenon known as “grokking”. An et al. [2023b] examines how LLMs acquire abstract reasoning
and achieve compositional generalization in a linguistic context through ICL by testing LLMs on tasks that involve
translating a formal language with a custom grammar. Although these studies offer insight, how LLMs compose
tasks together is still not fully understood, especially in the ICL setting. Moreover, the absence of a solid theoretical
framework in these discussions needs to be investigated concerning the underlying mechanisms of such behaviors.

Inspired by these seminal works, we further evaluate LLMs on a series of compositional tasks through ICL. The models
were presented with examples of simple tasks and then asked to tackle composite tasks that they had not encountered
during pretraining or in-context learning. We observe various behaviors: (1) for some composite tasks, the models
showed a reasonable level of compositional skill, a capability that improved with larger model sizes; (2) for more
complex composite tasks requiring sequential reasoning, the model struggle, and increasing the model size typically did
not lead to better performance.

Our key intuition is that if the simple tasks that form a composite task can be easily separated into subtasks based on the
inputs (e.g., performed separately on different parts of the input sentence), the model is more likely to complete such a
composite task successfully (we call it “a separable composite task”). The performance of the model depends on how it
connects and uses the information given for each part of the task. To clarify this insight, we present theoretical analyses
in a simplified setting and provide key insights into conditions needed for success in such separable composite tasks.

Our contributions are twofold. Empirically, we introduce a variety of composite tasks from both the linguistic and
logical domains to explore how the nature of these tasks influences the compositional performance of LLMs through
ICL. Theoretically, we provide analysis on a simple yet insightful model: a one-layer single-head linear self-attention
network [Von Oswald et al., 2023; Akyürek et al., 2023; Mahankali et al., 2023; Zhang et al., 2023b]. This framework
allows us to demonstrate a clear separation in input embedding, effectively breaking down composite tasks into simpler
components. We delve into the scaling of language models by examining the structure of the key and query matrices
in the attention mechanism, arguing that larger models with a more complex internal structure exhibit enhanced
performance on individual tasks, thereby improving their overall compositional capabilities on such separable tasks.

4.2 Warm-up: A Failure Case for Composition

Our goal is to understand the behavior of LLMs on compositional reasoning tasks. As a warm-up, we evaluate the
Capitalization & Swap tasks (Figure 4.1) on different models. Recall the tasks: given words of common objects, *
represents the operation of capitalizing the letters, () represents swapping the positions of the two words. We consider
the standard in-context learning setting, which concatenates input-output examples K = 10 and one test input as the
prompt for LLM. We perform experiments across various LLM families, e.g., Llama families [Touvron et al., 2023a]
and GPTs [Radford et al., 2019; Black et al., 2021], see model details in Section 9.1.

Composite Composite in-context
Prompt input: * apple

output: APPLE
input: ( farm frog )
output: frog farm
input: ( * bell * ford )

input: ( * good * zebra )
output: ZEBRA GOOD
input: ( * bicycle * add )

Truth output: FORD BELL output: ADD BICYCLE

Table 4.1: Examples of two settings on composite tasks. Com-
posite: in-context examples are about simple tasks, while the test
input is about the composite task. Composite in-context: both
in-context examples and the test input are about the composite
task.

Evaluation settings. To make thorough evaluations,
we consider four settings: (1) capital: only on the
capitalization task; (2) swap: only on swap; (3) com-
posite: in-context examples are from simple tasks
while the test input is about the composite task; (4)
composite in-context: in-context examples and the
test input are all drawn from the composite task. The
composite in-context setting reduces the evaluation
to another simple task, not requiring the model to
composite the simple task ability but directly learn-
ing from the in-context examples. It serves as the
gold standard performance for the composite task.
See Table 4.1 for illustration.

Results. In Figure 4.2, somewhat surprisingly, we
observe that LLMs cannot solve the composite task,
although they perform well on simple tasks. There
is a significant gap between the performance in these
settings. Models in Llama families can solve capital and swap with nearly ∼90% accuracy but only achieve around
20% or below on the composite task. We also observe that composite in-context examples will significantly improve
the performance: The accuracy of Llama families can go up to match the simple task accuracy. These observations
show that the models fail to compose the knowledge from the simple tasks, although they do have the representation
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power to solve the composite task (which can only be exploited when provided composite in-context examples) and
scaling up may not help.

7b 13b 30b 65b
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GPT

capital
swap
composite
composite_compose_incontext

Figure 4.2: The exact match accuracy (y-axis) vs the model scale (x-axis, “b” stands for billion) for Capitalization
& Swap tasks (example in Figure 4.1). Line capital: performance on the simple task of capitalization; swap: on the
simple task of swap; composite: in-context examples are from simple tasks while test input from the composite task.
composite incontext: in-context examples and test input are all from the composite task (example in Table 4.1).

4.3 Variability of Compositional Performance

The experiment on Capitalization & Swap shows failure cases while existing studies reported some successful composite
abilities [Levy et al., 2022; An et al., 2023b]. This observation suggests a more refined perspective: LLMs exhibit
variable compositional abilities, excelling in certain composite tasks while struggling in others. This section expands
our exploration to additional composite tasks to further examine and understand this variability.

We introduce more composite tasks, including linguistic and logical challenges, wrapped as a testing suite. Similar
to the Capitalization & Swap experiment, we design composite tasks that compose two simple tasks and evaluate the
model in four settings: the two simple tasks, the composite setting, and the composite in-context setting (Table 4.1 show
examples for the latter two). We consider two kinds of task: logical rules and linguistic translation. We first choose two
simple tasks and compose them to construct a composite task.

To address concerns about data leakage and the possibility that models encounter similar tasks during pretraining,
we opt for synthetic data in this work. While it is challenging to guarantee that test data has never been seen during
pretraining, we take significant steps to mitigate this risk. Specifically, we construct our compositional test data using a
unique syntax and mapping mechanism. This approach substantially shifts the data distribution away from existing
web-scale data, making it highly improbable that our test data has been encountered during pretraining. By doing so,
we aim to create novel composite tasks that comprehensively evaluate the models’ compositional abilities.

Section 4.3.1 investigates logical tasks and Section 4.3.2 investigates translation tasks.

We perform experiments to answer the following questions: (Q1) How do LLMs perform in various tasks, where
models might perform well in some scenarios while failing in others? (Q2) Does scaling up the model help in general?
(Q3) Is the variability in performance relevant to the nature of tasks? Our experiments provide the following answers:
(A1) A pattern of variable performance is observable across a range of composite tasks. (A2) Scaling-up helps when
the model exhibits compositional ability for certain tasks but may not help when the model initially struggles. (A3) In
tasks that involve processing inputs from varied segments or perspectives, especially simpler ones, the model tends to
demonstrate compositional capabilities.

4.3.1 Composite Logical Rules

We enhance our suite of logical tasks by introducing a series of straightforward tasks that process either simple words
or numerical values, with the output being a specific functional transformation of the input. These tasks are detailed in
Table 4.2.

Composite tasks are created by merging two simple tasks. We conceptualize simple tasks as functions, f(·) and g(·) that
map inputs to their respective outputs. We identify two distinct approaches to creating composite tasks: (1) Compose
by parts: For inputs x, y, the result is f(x), g(y). One example is (A) + (F) in Table 4.3. If a numerical number is
given, it will increment by one; if the word is given, the letters will be capitalized; if both are given, perform both
operations. (2) Compose by steps: Given input x, the result is f(g(x)). One example is (A) + (B) in Table 4.3. We use
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Tasks Task Input Output
Words (A) Capitalization apple APPLE

(B) Swap bell ford ford bell

(C) Two Sum twenty @ eleven thirty-one

(D) Past Tense pay paid

(E) Opposite Above Below

Numerical (F) Plus One 435 436

(G) Modular 15 @ 6 3

(H) Two Sum Plus One 12 # 5 18

Table 4.2: This table contains a collection of simple logical tasks. The Words category encompasses tasks that
modify words at the character or structural level. The Numerical category is devoted to tasks that involve arithmetic
computations performed on numbers.

Tasks Simple Task Simple Task Composite
(A) + (B) input: * apple

output: APPLE
input: ( farm frog )
output: frog farm

input: ( * bell * ford )
output: FORD BELL

(A) + (F) input: 435
output: 436

input: cow
output: COW

input: 684 cat
output: 685 CAT

Table 4.3: Examples of the two logical composite tasks. Full examples can be found in Section 9.1.

customized symbols as function mapping for composing two simple tasks. Examples are in Figure 4.1 and Table 4.3.
Following existing work, we use exact match accuracy to evaluate the performance since the output for these tasks is
usually simple and short.

Results. We provide our main results on composite tasks in Table 4.4. For the composed by parts tasks (A) + (F) and
(D) + (F), the models show strong compositional ability: the composite accuracy is high, improves with increasing
scale, and eventually reaches similar performance as the “gold standard” composite in-context setting, as highlighted in
red numbers. We refer to these tasks as “separable composite tasks”, which are relatively easy for the model to solve.
On the compose-by-step tasks, we observe the models have various performances. For composite tasks with sequential
reasoning steps, the models exhibit various performances. For tasks involving capitalization (A) or swap (B), the model
has poor performance on a small scale (7b or lower) but has increased performance in increased model scale, such as
44% accuracy in (A) + (C) and 66% accuracy in (B) + (D). One exception is Llama1-65b, which has lower accuracy than
a smaller-scale model. We conjecture it is due to some unknown inductive bias during the pretraining. On composite
steps tasks involving the arithmetic calculation of numerical numbers (G) + (H), the model has the worst performance,
and increasing the model scale does not provide benefits. A key observation is that compose-by-part tasks are separable
compositions where the input can be broken down into two distinct segments. Such tasks are typically straightforward
for a model to address. In all experiments, providing composed examples as in-context demonstrations will help the
model understand and solve the composite tasks well, such as Com. in-context rows in all task combinations. We
conclude that models fail to compose mechanisms of two simple tasks together; however, given composite examples,
models can learn the composed mechanism efficiently. We also experimented with prompt demonstrations and found
instructions provide no direct results; see more experimental details in Section 9.1.2. See more experimental results
(including Llama3 [Meta, 2024]) and visualizations in Section 9.1.3.

4.3.2 Composite Linguistic Translation

Inspired by previous work in compositional generalization [An et al., 2023b; Levy et al., 2022; An et al., 2023a; Kim
and Linzen, 2020], here we design our composite tasks by formal language translation tasks.

Our translation tasks are mainly derived from semantic parsing task COGS [Kim and Linzen, 2020] and compositional
generalization task COFE An et al. [2023b]. These two datasets contain input as natural English sentences and output
as a chain-ruled sentence following a customized grammar (see details in Section 9.2). We construct two composite
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Mistral Llama2 Llama1
Tasks 7B 8x7B 7B 13B 70B 7B 13B 30B 65B

(A) + (B) Capitalization 99 98 99 100 100 98 98 100 100
swap 100 100 100 100 100 100 100 100 100

Compose 16 42 7 1 37 0 30 16 13
Com. in-context 95 96 96 98 100 66 97 96 98

(A) + (C) twoSum 71 100 72 93 99 62 56 98 99
Capitalization 98 99 100 95 99 97 98 99 99

Compose 8 19 3 23 44 3 3 31 2
Com. in-context 31 65 52 77 100 9 22 93 69

(A) + (F) Capitalization 97 99 98 77 99 84 96 99 98
PlusOne 100 99 100 100 100 100 100 100 100
Compose 92 96 74 69 97 57 60 69 99

Com. in-context 99 98 99 100 100 99 99 100 100

(B) + (D) Swap 100 100 100 100 100 100 100 100 100
Past Tense 97 99 97 100 99 97 98 100 100
Compose 6 12 0 1 62 57 34 46 5

Com. in-context 92 98 86 95 98 86 95 89 94

(B) + (E) Swap 100 100 100 100 100 100 100 100 100
Opposite 61 62 58 68 65 51 58 64 63
Compose 0 0 0 0 0 0 0 0 0

Com. in-context 35 32 12 37 37 0 9 7 9

(D) + (F) Past Tense 100 100 98 100 100 100 100 100 100
Plus One 100 100 100 100 100 99 100 100 100
Compose 71 46 32 80 80 40 44 14 74

Com. in-context 98 100 98 99 100 95 96 98 100

(G) + (H) Modular 25 22 5 23 43 9 16 29 29
twoSumPlus 38 42 3 77 90 14 10 40 87

Compose 4 5 0 1 1 0 0 0 5
Com. in-context 4 8 13 13 12 11 13 7 12

Table 4.4: Results are evaluated composite tasks on various models. The accuracy is in %.

tasks centered on compositional generalization utilizing the training datasets to create in-context examples. See details
in Section 9.2.

We use the word error rate (WER) as the metric. It measures the minimum number of editing operations (deletion,
insertion, and substitution) required to transform one sentence into another and is common for speech recognition or
machine translation evaluations.

(T1) Phrase Recombination with Longer Chain. COFE proposed two compositional generalization tasks (Figure 2 in
An et al. [2023b]). Phrase Recombination: integrate a prepositional phrase (e.g., “A in B”) into a specific grammatical
role (e.g., “subject”, “object”); Longer Chain: Extend the tail of the logical form in sentences. We see them as simple
tasks, and merge them to form a composite task: substitute the sentence subject in the Longer Chain task with a
prepositional phrase from the Phrase Recombination task. Details and examples are in Table 9.5 of Section 9.2.

(T2) Passive to Active and Object to Subject Transformation. We consider two tasks from Kim and Linzen [2020].
Passive to Active: Transitioning sentences from passive to active voice. Object to Subject: Changing the same object (a
common noun) from objective to subjective. They are merged to form our composite task, where both transformations
are applied simultaneously to the input sentence. Details and examples are in Table 9.4 of Section 9.2.

Results. Figure 4.3 shows that LLMs can handle these composite tasks. The WER on the composite task is decent and
improves with increasing model scale, particularly in Llamma2 models. These confirm the composite abilities of the
models in these tasks.

Here, we notice that both composite tasks are separable composite tasks. If we break down these sentences into
sub-sentences and phrases, the simple task operations occur in different parts or perspectives of the input sentences. So,
the results here provide further support for composite abilities on separable composite tasks, where simple tasks that
form the composite task are related to inputs from different parts or perspectives.
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Figure 4.3: The word error rate (WER) vs the model scale on composite linguistic translation tasks. Dashed lines:
simple tasks. Solid lines: composite tasks. Rows: (T1) Phrase Recombination with Longer Chain; (T2) Passive to
Active and Object to Subject Transformation. Columns: different models. Lines: performance in different evaluation
settings, e.g., the two simple tasks, the composite setting, and the composite in-context setting (examples are shown in
Section 9.2).

We also observed the LLM exhibits better compositional ability on linguistic tasks than on logical tasks. We conclude
natural language inputs can indeed help language models understand concepts better than special symbols or code.
Natural language provides a richer context, which aligns better with how these models are trained on large text corpora.
In contrast, logical and numerical tasks often rely on more rigid structures, which makes it harder for models to
generalize without explicit training on such patterns.

Discussion. We observe the capability of models to handle composite tasks is significantly influenced by the task
characteristics. If composite tasks contain simple tasks related to different parts or perspectives of the input, the model
will tackle the composite tasks well.

One natural explanation is that the model processes the input in some hidden embedding space and decomposes the
embedding of the input into different “regions”. Here, each region is dedicated to specific types of information and thus
related to different tasks, such as word-level modifications, arithmetic calculations, mapping mechanisms, semantic
categorization, linguistic acceptability, or sentiment analysis. Then, suppose the two simple tasks correspond to two
different task types that relate to separate regions of the embedding. In that case, the model can effectively manage
the composite task by addressing each simple task operation within its corresponding region. As the model scales, its
ability to handle individual tasks improves, leading to enhanced performance on composite tasks in such scenarios. For
separable composite tasks, the inputs are divided into distinct regions and also reflected in embeddings, resulting in
the model’s high performance. However, when the simple tasks are not separable (e.g., requiring sequential steps in
reasoning), their information mixes together, complicating the model’s ability to discern and process them distinctly.
Such overlap often leads to the model’s inability to solve the composite task. This intuition is formalized in the following
sections in a stylized theoretical setting.

4.4 Theoretical Analysis

4.4.1 Problem Setup

Despite the complex nature of non-linearity in transformers in LLMs, we note it is useful to appeal to the simple case of
linear models to see if there are parallel insights that can help us better understand the phenomenon. In this section, we
analyze a linear attention module and aim to provide rigorous proof about why LLMs can achieve compositional ability
in some simple cases that could shed light on the more intricate behaviors observed in LLMs.
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In-context learning. We follow existing work [Akyürek et al., 2023; Garg et al., 2022; Mahankali et al., 2023] with
slight generalization to K simple tasks. A labeled example is denoted as (x, y) where x ∈ Rd, y ∈ RK . In a simple
task k ∈ [K], y has only one non-zero entry y(k). In a composite task, y can have non-zero entries in dimensions
corresponding to the combined simple tasks. The model takes a prompt (x1, y1, . . . , xN , yN , xq) as input, which
contains N in-context examples (xi, yi)’s and a query xq, and aims to predict ŷq close to the true label yq for xq.

The prompt is usually stacked into an embedding matrix: E :=

(
x1 x2 . . . xN xq

y1 y2 . . . yN 0

)
∈ Rde×(N+1) where

de = d+K. In in-context learning, we first pretrain the model using training prompts and then evaluate the model with
evaluation prompts; see details below.

Pretraining procedure. We have B training data indexed by τ , each containing an input prompt
(xτ,1, yτ,1, . . . , xτ,N , yτ,N , xτ,q) and a corresponding true label yτ,q. Consider the following empirical loss:
L̂(θ) =

∑K
k=1 L̂k(θ) = 1

2B

∑B
τ=1 ∥ŷτ,q − yτ,q∥2 and the population loss (i.e., B →∞): L(θ) =

1
2Exτ,1,yτ,1,··· ,xτ,N ,yτ,N ,xτ,q

[
(ŷτ,q − yτ,q)

2
]
.

Evaluation procedure. We now detail how to evaluate the model on downstream composite tasks. We consider the
downstream classification task to be a multi-class classification problem, where the output label is a K-dimensional
vector, and each entry corresponds to a simple binary classification task. For any given simple task k, the binary
classification label is given by sgn(y(k)q ), where sgn is the sign function. Similarly, our prediction is ỹ(k)q = sgn

(
ŷ
(k)
q

)
.

The accuracy of a composite task is defined as Accθ(x1, . . . , yN , xq) =
1
K

∑K
k=1 1

(
sgn
(
ŷ
(k)
q

)
= sgn(y(k)q )

)
. We

denote it as Accθ({xi, yi}Ni=1). Here we denote the model performance on each task as separate dimension, (e.g.letter
capitalization, numbers increment), and the performance of composite tasks as the aggregation of multiple dimensions.

Data. Assume x
i.i.d.∼ N (0,Λ), where Λ ∈ Rd×d is the covariance matrix. Assume y = Wx, where W ∈ RK×d. For

any simple task k ∈ [K], its label is the k-th entry of y, which is y(k) = ⟨w(k), x⟩, where w(k) is the k-th row of W .
We assume each task weight w(k) i.i.d.∼ N (0, Id).

Linear self-attention networks. These networks are widely studied [Von Oswald et al., 2023; Akyürek et al., 2023;
Garg et al., 2022; Zhang et al., 2023b; Shi et al., 2023d]. Following them, we consider the following linear self-attention
network with parameters θ = (WPV ,WKQ): fLSA,θ(E) = E +WPV E · E

⊤WKQE
N . The prediction of the model for

xq is ŷq = [fLSA,θ(E)](d+1):(d+K),N+1, the bottom rightmost sub-vector of fLSA,θ(E) with length K.

Compositional ability. We now provide a formal definition about compositional ability of an LLM on composite tasks.

Definition 4.4.1 (Compositional Ability). Consider a composite task T that combines two simple tasks k and g. Let
Sk denote N labeled examples from task k, and similarly for Sg. Given an xq from composite task T , we say that the
model has compositional ability on T if the model has higher accuracy using in-context examples from Sk ∪ Sg than
from either single one, i.e. max{Accθ(Sk),Accθ(Sg)} ≤ Accθ(Sk ∪ Sg).

4.4.2 Theoretical Results

In this section, we present our theoretical results. We explain the observation in empirical results through the lens of
confined supports in input embeddings corresponding to separate subspaces (modeling separable composition). We
provide theoretical justification showing that separable composite task composite tasks whose inputs are composed by
components adhere to certain conditions where models exhibit satisfactory performance. Models will fail when such
conditions are violated. We first introduce the basic setup and definitions.

Disjoint subspaces of simple tasks. Recall that x lies in a d-dimensional space where each dimension represents a
different characteristic. A simple task may depend only on a subset of these dimensions since its label only depends on
a few features. Let S = [d] represent the dimensions of x. For a task k, the output y(k) = ⟨wk, x⟩ depends on a subset
of dimensions in x. Denote this subset by K ⊆ S and call it the active index set for task k.

In the following, we always assume that the K tasks have disjoint subspaces: for any two tasks k ̸= g, their active index
sets K, and G are disjoint, i.e., K ∩G = ∅. In practice, the dimensions within K could be associated with numerical
arithmetic operations, while those in G might pertain to semantic analysis. This illustrates the model’s approach to
address these tasks in their respective subspaces.

We now introduce a mild assumption regarding the distribution of input embeddings.
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Assumption 4.4.2. Given two disjoint subspaces K and G, the covariance matrix Λ of the input distribution can be
segmented into block matrices ΛKK,ΛKG,ΛGK, and ΛGG, then we assume σmax(ΛKG) = σmax(ΛGK) ≤ ϵ for constant
ϵ, where σ(·) denote the singular value of matrix.

Assumption 4.4.2 implies that for two separate simple tasks, each associated with its respective feature subspace K and
G, the covariance between these two sets of features is bounded by a constant value. This is a natural assumption when
inputs of composite tasks can be decomposed into parts. Suppose we have input embeddings from two tasks: arithmetic
computations and semantic analysis. This assumption suggests that the feature subspaces of the input embeddings for
two tasks are almost independent.

We now define confined support, which means that each task’s input embedding only has support within its feature
subspace.
Definition 4.4.3 (Confined Support). We say a task has confined support if the input x only has larger singular values
within its active index set. The norm of entries outside the active index set is bounded by a small constant δ.

This definition shows that each simple task only has large values within its corresponding subsets of dimensions of input
embeddings. For example, let K represent the first d1 dimensions of an input vector x, and G account for the remaining
d2 dimensions, with the total dimension being d = d1 + d2. The examples from task k will have input as x = (x1, xδ1)
where x1 ∈ Rd1 , xδ1 ∈ Rd2 , ∥xδ1∥ ≤ δ. Similarly, the examples from task g will have inputs as x = (xδ2 , x2).

We now present our results of the compositional ability under a confined support of x.

Theorem 4.4.4. Consider distinct tasks k and g with corresponding examples Sk,Sg . If two tasks have
confined support, and Assumption 4.4.2 is true, then with high probability, the model has the compositional
ability as defined in Definition 4.4.1. Moreover,

Accθ(Sk) + Accθ(Sg) ≤ Accθ(Sk∪g).

Theorem 4.4.4 shows the compositional ability of LLMs to handle composite tasks that integrate two simple tasks,
which have confined support in their own feature subspace.

An illustrative case involves the tasks of Capitalization (A) & Plus One (F) and Past Tense (D) & Plus One (F), as
depicted in Table 4.4. These two simple tasks involve word-level modification and arithmetic operation on separate
parts of the input. Due to this separation, each task correlates with a specific segment of the input embedding. Therefore,
it is observed that these tasks possess confined supports.

We further provide theory illustrating the necessity of the confined supports, we demonstrate that when the confined
support is violated, simple tasks begin to show variations (indicated by large singular values) across the entire feature
subspace of the input embedding. For instance, the composite task of Capitalization (A) & Swap (B), which involves
mixed steps in reasoning as shown in Figure 4.2, shows poor performance of LLMs given both simple tasks’ examples
as in-context demonstrations. Another example is Modular (G) & Two Sum Plus (H) as shown in the last row of
Table 4.4, where both simple tasks involve multisteps arithmetic operation. These two tasks share the same embedding
space support, mixing their variations and causing the model to be unable to effectively address the composite tasks that
integrate them. We further substantiate this observation with Section 4.4.2, which establishes that when two tasks share
overlapping support in the embedding space, a scenario can arise where the model fails to demonstrate compositional
ability.

If two tasks do not have confined support, there exists one setting in which we have
Accθ(Sk) = Accθ(Sg) = Accθ(Sk∪g).

Section 4.4.2 demonstrates that a model’s failure to solve tasks with mixed steps reasoning, which contains overlapping
input embedding spaces, thereby diminishing the model’s ability to solve them when presented together.

We also show the scaling effect: if simple tasks have confined support, the compositional ability of language models
will increase as the model scale increases in Theorem 9.3.1 in Section 9.3.1. We demonstrate this by showing that the
model’s accuracy on each simple task improves with a larger model scale. We finally provide a case study on confined
support for illustration in Section 9.3.2. We defer the full proof in Section 9.4.

4.5 Conclusion

In this work, we presented a distinct pattern in LLMs’ behaviors when tackling composite tasks. We observed that if the
composite task can be separated into two simple tasks whose inputs are from distinct perspectives, the models exhibit
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decent compositional ability. Otherwise, LLMs will struggle, and scaling up the model size may not offer improvement.
We illustrated this behavior across a variety of logical and linguistic challenges. We extended our discussion to the
role of input embeddings in affecting model performance, providing a theoretical backup that connects the nature of
tasks to how inputs are processed. We anticipate that our research will shed light on the compositional capabilities and
reasoning of LLMs, and stimulate further exploration in this direction.

This work addresses the second core challenge we proposed in Chapter 1: understanding and enhancing complex
compositional reasoning in foundation models. Our findings reveal fundamental patterns in how these models handle
composite tasks, providing crucial insights into their cognitive limitations. These discoveries directly inform our ongoing
collaborated work on analyzing induction heads and their role in out-of-distribution generalization, as understanding
the mechanisms behind successful composition cases can help us develop more robust architectures for complex
reasoning tasks. Furthermore, this improved understanding of compositional behavior helps bridge the gap between
general-purpose models and specialized task performance, connecting back to our broader goal of efficient model
adaptation.
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Chapter 5

Adaptive Runtime Inference

Building on our completed work in few-shot adaptation and compositional reasoning, my work investigates how to
enhance foundation models’ specialized capabilities. With our ongoing work of adaptive inference, we aim to develop a
framework that improve efficiency in adapting to downstream tasks.

5.1 Motivation

Foundation models have increasingly evolved toward multimodal capabilities, with multimodal LLMs emerging as key
players in the field. While these models demonstrate remarkable visual reasoning abilities, they come with substantial
computational costs. Several recent efforts seek to improve the efficiency of MLLMs by considering lightweight
architectures, mixture of experts or token selection techniques [Lin et al., 2024; Shang et al., 2024]. A key characteristic
of these prior approaches is that they produce models with static accuracy and latency footprint.

We argue that MLLMs with fixed computational footprint are insufficient for real-world deployment. Consider the
example of deploying an MLLM on a server farm. Different requests may have distinct latency requirements, e.g.,
requests from a mobile application, which requires instant feedback to an user vs. those from a recommendation system,
which performs updates less frequently and thus can tolerate a higher latency. Further, the available computing resources
may vary at any given point in time, as the overall loads of the system fluctuate. Similarly, when deployed on edges
device, the latency budget often remains constant, yet the computing resources may vary due to contention produced by
other on-device programs.

5.2 Proposed Work

In departure from prior approaches, we propose to address latency-aware adaptive inference for MLLMs, aiming to
dynamically adjust a model’s computational load based on input content and a specified latency budget. This problem

What is the image showing?

Input image

The image is showing a painting or 
drawing of a snowy winter scene.

50% latency budget

4 TFLOPs

The image shows a snowman holding 
a colorful ball.

75% latency budget

6 TFLOPs

The image shows a snowman holding 
a colorful egg.

100% latency budget

8 TFLOPs

AdaLLaVA

The image shows a snowman holding 
a colorful egg. 8 TFLOPs

LLaVA

Figure 5.1: Given an image-query pair and latency constraints, AdaLLaVA learns to generate appropriate responses while adapting
to varying computational budgets.
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is of both conceptual interest and practical significance. Our key insight is that an MLLM can be conceptualized as a
collection of shallower models, which can be leveraged for dynamic reconfiguration during inference. For example,
previous works have shown that Transformer blocks in an LLM and some attention heads within these blocks can
be bypassed with minor impact on accuracy [Wu et al., 2018; Meng et al., 2022]. Therefore, strategically selecting
operations with varying accuracy impacts during inference leads to a set of models with shared parameters but distinct
accuracy-latency tradeoffs, enabling the MLLM to flexibly respond to varying latency requirements.

To this end, we present AdaLLaVA, a learning-based framework for adaptive inference in MLLMs. As shown in
Fig. 5.1, given query and the latency budget, the MLLM can answer the query without violation of the budget. Key to
AdaLLaVA lies in a learned scheduler that dynamically generates an execution plan, selecting a subset of operations
within an MLLM based on the input content and a specified latency budget. This execution plan ensures that inference
is performed within the given latency constraint while maximizing expected accuracy. To enable effective learning of
the scheduler, we introduce a probabilistic formulation in tandem with a dedicated sampling strategy to account for
latency constraints at training time.

5.3 Contributions

We conduct extensive experiments and demonstrate that AdaLLaVA can achieve a range of accuracy-latency tradeoffs
at runtime. AdaLLaVA maintains comparable performance to full models across several benchmarks while operating
with higher efficiency. Further, AdaLLaVA exhibits strong adaptability to different latency budgets, effectively
trading accuracy for speed during inference, particularly in extremely latency-constrained settings. In all cases,
AdaLLaVA adheres to latency budgets. Additionally, AdaLLaVA can be further integrated with token selection
techniques to further enhance efficiency, and demonstrates content-aware optimization by generating execution solutions
tailored to specific input samples.

Our key contributions are three folds.

• We present AdaLLaVA, a novel adaptive inference framework for MLLM. Our method for the first time
enables dynamic model execution based on a latency budget and input contents at inference time.

• Our key technical innovation lies in the design of a latency-aware scheduler, which reconfigures a base MLLM
model at inference time, along with a probabilistic modeling approach that allows for the incorporation of hard
latency constraints during MLLM training.

• Through extensive experiments, we show that AdaLLaVA can adapt to a range of latency requirements while
preserving the performance of the base model, and that AdaLLaVA can be integrated with token selection
techniques to further enhance efficiency.

5.4 Conclusion

This work advances my research goals by addressing the practical deployment challenges of foundation models, partic-
ularly in the emerging multimodal domain. While our earlier work focused on efficient adaptation and understanding
compositional reasoning, this research complements those efforts by developing adaptive inference techniques that
make these models more practically viable. Our framework for dynamic operation reconfiguration represents a crucial
step toward our broader goal of transforming foundation models into practical, task-specific experts. Furthermore,
this work opens new directions for our ongoing research in developing adaptive inference frameworks for multimodal
LLMs, particularly in understanding how model behavior changes under different computational constraints and how
we can maintain reasoning capabilities while optimizing for efficiency.
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Chapter 6

Proposed Work

6.1 Broader Efficient Inference

Our previous work on adaptive inference demonstrated the potential of dynamic component selection in multimodal
LLMs. However, achieving truly efficient and adaptable foundation models requires a more comprehensive approach
that optimizes both at the token level and architectural level while maintaining reasoning capabilities.

6.1.1 Motivation

While foundation models have shown remarkable capabilities, their deployment remains constrained by computational
costs and efficiency challenges. Our completed work on adaptive inference revealed that dynamic model reconfiguration
can significantly improve efficiency, but also highlighted the need for more sophisticated optimization strategies. Current
approaches primarily focus on model component selection, overlooking the potential of integrated token selection and
computation routing strategies that have shown promise in recent work [Shang et al., 2024; Chen et al., 2025; Zhang
et al., 2024]. Furthermore, recent advances in mechanistic interpretability have identified key components within LLMs
that significantly impact model performance on comprehension benchmarks [Song et al., 2024; Reddy, 2024; Wang
et al., 2023a]. These insights open new possibilities for developing training-free algorithms for component selection,
offering a principled approach to efficiency optimization that maintains model capabilities.

6.1.2 Proposed Work

We propose to develop a comprehensive efficiency framework that operates at multiple perspectives:

• Token-Level Optimization: Develop content-aware token selection strategies that dynamically identify and
retain crucial tokens for different tasks. Design predictive mechanisms to anticipate token importance based
on task requirements and computational constraints.

• Architecture-Guided Component Selection: Leverage mechanistic interpretability insights to identify key
induction heads and attention patterns crucial for specific tasks.

6.1.3 Contributions

This research will advance the field through novel algorithms for joint token and component optimization, and practical
techniques for deploying foundation models under varying computational constraints.

6.1.4 Conclusion

This work will deepen our understanding of how model architecture influences reasoning capabilities in foundation
models. By systematically analyzing and enhancing architectural components, we aim to develop more capable
models for complex reasoning tasks. This research directly addresses our thesis goals of understanding and improving
foundation models’ specialized capabilities while maintaining efficiency.
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6.2 Complex Reasoning

Building on our previous findings about compositional abilities in LLMs, we now aim to systematically investigate how
architectural elements influence complex reasoning capabilities, particularly focusing on the interaction between model
architecture and in-context learning performance.

6.2.1 Motivation

While our earlier work revealed patterns in how LLMs handle composite tasks, fundamental questions remain about the
architectural mechanisms enabling complex reasoning. Recent work has shown that specific architectural components,
particularly induction heads and attention patterns, play crucial roles in model behavior. However, we lack a systematic
understanding of how these components contribute to reasoning capabilities and how they can be enhanced. Additionally,
while techniques like Chain-of-Thought prompting have shown promise, their interaction with model architecture in
solving compositional tasks remains poorly understood.

6.2.2 Proposed Work

We propose a comprehensive investigation of architectural influences on reasoning capabilities:

• Systematically analyze how different architectural components contribute to basic logical operations (negation,
conjunction, disjunction).

• Map the relationship between attention patterns and specific reasoning steps.
• Develop methods to identify and strengthen key components responsible for compositional understanding.
• Analyze embedding similarities and prediction probabilities across model layers during reasoning.
• Create a comprehensive benchmark for evaluating compositional reasoning capabilities.

6.2.3 Contributions

This research will make several key contributions to the field of foundation models. First, it will provide a systematic
understanding of how architectural elements enable logical reasoning, revealing the mechanisms behind basic and
complex reasoning operations. Through novel architectural modifications, we will enhance models’ compositional
capabilities, particularly in handling multi-step reasoning tasks. Our development of a comprehensive benchmark for
evaluating compositional reasoning will establish new standards for assessing model performance across different types
of logical tasks. Furthermore, by investigating the interplay between prompting techniques and model architecture,
we will uncover new insights into how different architectural components respond to and process various prompting
strategies. Finally, these findings will translate into practical guidelines for designing more capable models, helping
bridge the gap between theoretical understanding and practical implementation of stronger reasoning capabilities in
foundation models.

6.2.4 Conclusion

This work will deepen our understanding of how model architecture influences reasoning capabilities in foundation
models. By systematically analyzing and enhancing architectural components, we aim to develop more capable
models for complex reasoning tasks. This research directly addresses our thesis goals of understanding and improving
foundation models’ specialized capabilities while maintaining efficiency.
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Chapter 7

Conclusion

Our research addresses fundamental challenges in making foundation models more practical and capable through two
complementary threads. In our completed work, we first tackled the challenge of efficient adaptation through theoretical
analysis of multitask finetuning, revealing how diverse task sets can significantly improve adaptation performance with
limited labeled data (Chapter 3). We then investigated compositional abilities in LLMs, uncovering distinct patterns in
how these models handle different types of composite tasks and providing theoretical insights into their success and
failure modes (Chapter 4). Our work on adaptive inference for multimodal LLMs demonstrated how dynamic model
reconfiguration can improve deployment efficiency while maintaining performance (Chapter 5).

Building on these foundations, our proposed work extends in two crucial directions. First, we aim to develop a
comprehensive efficiency framework that combines token-level optimization with mechanistic interpretability-guided
component selection, advancing beyond our initial adaptive inference work to create more sophisticated optimization
strategies (Chapter 6, Sec. 6.1). Second, we will deepen our investigation of compositional reasoning by analyzing how
architectural elements influence reasoning capabilities, extending our earlier findings about compositional patterns to
understand and enhance the mechanisms behind complex reasoning (Chapter 6, Sec. 6.2). Together, these research
directions form a coherent approach to our central goal: transforming general-purpose foundation models into more
efficient and capable task-specific experts. Our completed work established fundamental understanding and initial
solutions, while our proposed work aims to develop more comprehensive frameworks for both efficient deployment
and enhanced reasoning capabilities. This progression from theoretical foundations to practical solutions addresses the
critical challenges of adaptation, efficiency, and reasoning that currently limit the practical impact of foundation models.

7.1 Additional collaborative work

While my research primarily focuses customize+ foundation models, I have also contributed to several related research
directions that further our understanding of LLMs. Below, I briefly summarize these works and discuss their connections
to the main themes of this document.

Understanding Scale Effects in In-Context Learning. In collaborative work [Shi et al., 2024b] investigating why
larger language models perform in-context learning differently, we investigated how model scale affects in-context
learning behavior in LLMs. Through theoretical analysis and empirical studies, we found that larger and smaller models
process in-context examples differently: larger models tend to be more sensitive to noise in test contexts, while smaller
models show increased robustness. Our theoretical framework explains this behavior by showing that smaller models
focus on key features while larger models distribute attention across a broader range of features, providing new insights
into how model scale influences learning dynamics. Our experiments demonstrate how LLMs of varying sizes perform
differently in in-context learning tasks. This work provides additional theoretical insights into how model scale affects
learning behaviors, complementing our analysis of compositional abilities.

Investigating OOD Generalization Through Induction Heads. We also contributed to research examining out-
of-distribution generalization in transformers through the lens of induction heads [Song et al., 2024]. This work
investigated the role of induction heads in transformer models through systematic ablation experiments. Using synthetic
in-context learning tasks designed to test compositional reasoning, we examined how models perform when induction
heads are removed or shuffled between layers. These experiments provided empirical evidence that induction heads
are critical for compositional learning and out-of-distribution generalization. The experimental results showed clear
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performance degradation on compositional tasks when induction head functionality was disrupted, supporting the
theoretical framework about how transformers compose information across attention layers to achieve generalization.

7.2 Timeline

Our ongoing adaptive inference project (Chapter 5) will be completed by January 2025. The efficiency inference work
(Chapter 6, Sec. 6.1) is scheduled for completion by summer 2025, with a submission-ready manuscript. Our research
on reasoning capabilities (Chapter 6, Sec. 6.2) will start in spring 2025 and possibly extend through fall 2025. With
these milestones in place, I am targeting a thesis defense in fall 2025, approximately one year from now.

7.3 Broader impact

In general, my future proposed thesis will advance the field of foundation models through contributions that address
critical challenges in their practical deployment and theoretical understanding. Our work establishes new frameworks
for efficient model adaptation, enhances our understanding of how these models approach complex reasoning tasks, and
develops novel methods for efficient deployment. These contributions not only advance the theoretical foundations of
machine learning but also provide practical solutions for making foundation models more accessible and effective in
real-world applications. By bridging the gap between theoretical capabilities and practical deployment, this work helps
pave the way for more efficient, capable, and practically viable AI systems.
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Chapter 8

Appendix of Chapter 3

In this appendix, we state our limitation in Section 8.1. The proof of our theoretical results for the binary case is
presented in Section 8.2, where we formalize the theoretical settings and assumptions and elaborate on the results
to contrastive pretraining in Section 8.2.1 and supervised pretraining in Section 8.2.2. We prove the main theory in
Section 8.2.4, which is a direct derivative of 8.2.1 and 8.2.2. We generalize the setting to multiclass and provide
proof in Section 8.3. We include the full proof of the general linear case study in Section 8.4. We provide additional
experimental results of vision tasks in Section 8.5, language tasks in Section 8.6, and vision-language tasks in Sec. 8.7.

8.1 Limitation

We recognize an interesting phenomenon within multitask finetuning and dig into deeper exploration with theoretical
analysis, while our experimental results may or may not beat state-of-the-art (SOTA) performance, as our focus is not
on presenting multitask finetuning as a novel approach nor on achieving SOTA performance. On the other hand, the
estimation of our diversity and consistency parameters accurately on real-world datasets is valuable but time-consuming.
Whether there exists an efficient algorithm to estimate these parameters is unknown. We leave this challenging problem
as our future work.

8.2 Deferred Proofs

In this section, we provide a formal setting and proof. We first formalize our setting in multiclass. Consider our task T
contains r classes where r ≥ 2.

Contrastive Learning. In contrastive learning, we sampled one example x from any latent class y, then apply the
data augmentation module that randomly transforms such sample into another view of the original example denoted x+.
We also sample other r − 1 examples {x−

k }rk=1 from other latent classes {y−k }
r−1
k=1. We treat (x, x+) as a positive pair

and (x, x−
k ) as negative pairs. We define Dcon(η) over sample (x, x+, x−

1 , . . . , x
−
r−1) by following sampling procedure

(y, y−1 , . . . , y
−
r−1) ∼ ηr (8.1)

x ∼ D(y), x+ ∼ D(y), x−
k ∼ D(y

−
k ), k = 1, . . . , r − 1. (8.2)

We consider general contrastive loss ℓu

({
ϕ(x)⊤

(
ϕ(x+)− ϕ(x−

k )
)}r−1

k=1

)
, where loss function ℓu is non-negative

decreasing function. Minimizing the loss is equivalent to maximizing the similarity between positive pairs while minimiz-
ing it between negative pairs. In particular, logistic loss ℓu(v) = log (1 +

∑
i exp (−vi)) for v ∈ Rr−1 recovers the one

used in most empirical works: − log

(
exp{ϕ(x)⊤ϕ(x+)}

exp{ϕ(x)⊤ϕ(x+)}+
∑r−1

i=1 exp{ϕ(x)⊤ϕ(x−
i )}

)
. The population contrastive loss is de-

fined as Lcon−pre(ϕ) := E
[
ℓu

({
ϕ(x)⊤

(
ϕ(x+)− ϕ(x−

k )
)}r−1

k=1

)]
. Let Scon−pre :=

{
xj , x

+
j , x

−
j1, . . . , x

−
j(r−1)

}N

j=1

denote our contrastive training set with N samples, sampled from Dcon(η), we have empirical contrastive loss
L̂con−pre(ϕ) :=

1
N

∑N
i=1

[
ℓu

({
ϕ(x)⊤

(
ϕ(x+)− ϕ(x−

k )
)}r−1

k=1

)]
.
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Supervised Learning. In supervised learning we have a labeled dataset denoted as Scon−pre := {xj , yj}Nj=1 with N

samples, by following sampling procedure:

y ∼ η (8.3)
x ∼ D(y). (8.4)

There are in total K classes, denote C as the set consists of all classes. On top of the representation function ϕ, there
is a linear function f ∈ F ⊂

{
Rd → RK

}
predicting the labels, denoted as g(x) = f ◦ ϕ(x). We consider general

supervised loss on data point (x, y) is

ℓ(g(x), y) := ℓu ((g(x))y − (g(x))y′ ̸=y,y′∈C) . (8.5)

where loss function ℓu is non-negative decreasing function. In particular, logistic loss ℓu(v) = log (1 +
∑

i exp (−vi))
for v ∈ RK−1 recovers the one used in most empirical works:

ℓ(g(x), y) = ℓu ((g(x))y − (g(x))y′ ̸=y,y′∈C) (8.6)

= log

1 +

K∑
k ̸=y

exp (− [(g(x))y − (g(x))k])

 (8.7)

= − log

{
exp(g(x))y∑K
k=1 exp(g(x))k

}
. (8.8)

The population supervised loss is

Lsup−pre(ϕ) = min
f∈F

E
x,y

[ℓ (f ◦ ϕ(x), y)] . (8.9)

For training set Ssup−pre := {xi, yi}Ni=1 with N samples, the empirical supervised pretraining loss is L̂sup−pre(ϕ) :=

minf∈F
1
N

∑N
i=1 [ℓ (f ◦ ϕ(xi), yi)].

Masked Language Modeling. Masked language modeling is a self-supervised learning method. It can be viewed
as a specific form of supervised pretraining above. The pretraining data is a substantial dataset of sentences, often
sourced from Wikipedia. In the pretraining phase, a random selection of words is masked within each sentence, and the
training objective is to predict these masked words using the context provided by the remaining words in the sentence.
This particular pretraining task can be viewed as a multi-class classification problem, where the number of classes
(denoted as K) corresponds to the size of the vocabulary. Considering BERT and its variations, we have function ϕ as a
text encoder. This encoder outputs a learned representation, often known as [CLS] token. The size of such learned
representation is d, which is 768 for BERTBASE or 1024 for BERTLARGE.

Supervised Tasks. Given a representation function ϕ, we apply a task-specific linear transformation W to the
representation to obtain the final prediction. Consider r-way supervised task T consist a set of distinct classes
(y1, . . . , yr) ⊆ C. We define DT (y) as the distribution of randomly drawing y ∈ (y1, . . . , yr), we denote this process
as y ∼ T . Let ST := {xj , yj}mj=1 denote our labeled training set with m samples, sampled i.i.d. from yj ∼ T and
xj ∼ D(yj). Define g(ϕ(x)) := Wϕ(x) ∈ Rr as prediction logits, where W ∈ Rr×d. The typical supervised logistic

loss is ℓ(g ◦ ϕ(x), y) := ℓu

(
{g(ϕ(x))y − g(ϕ(x))y′}y′ ̸=y

)
. Similar to Arora et al. [2019], define supervised loss w.r.t

the task T

Lsup(T , ϕ) := min
W∈Rr×d

E
y∼T

E
x∼D(y)

[ℓ (W · ϕ(x), y)] . (8.10)

Define supervised loss with mean classifier as Lµ
sup(T , ϕ) := E

y∼T
E

x∼D(y)
[ℓ (Wµ · ϕ(x), y)] where each row of Wµ is

the mean of each class in T , Wµ
yk

:= µyk
= E

x∼yk

(ϕ(x)), k = 1, . . . , r. In the target task, suppose we have r distinct

classes from C with equal weights. Consider T follows a general distribution ζ. Define expected supervised loss as
Lsup(ϕ) := E

T ∼ζ
[Lsup(T , ϕ)].

Mutlitask Finetuning. Suppose we have M auxiliary tasks {T1, T2, . . . , TM}, each with m labeled samples Si :=
{(xi

j , y
i
j) : j ∈ [m]}. The finetuning data are S := ∪i∈[M ]Si. Given a pretrained model ϕ̂, we further finetune it using
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Algorithm 2 Multitask Finetuning

Require: multitasks T1, . . . , TM , pretrained model ϕ̂ with parameter θ, step size γ

1: Initialize ϕ with ϕ̂
2: repeat
3: for all Ti do
4: θ ← θ − γ∇θ L̂sup(Ti, ϕ) { L̂sup(Ti, ϕ) is defined in (3.2)}
5: end for
6: until converge

Ensure: The final model, denoted as ϕ′

the objective:

min
ϕ∈Φ

1

M

M∑
i=1

L̂sup(Ti, ϕ), where L̂sup(Ti, ϕ) := min
wi∈Rd

1

m

m∑
j=1

ℓ(w⊤
i ϕ(x

i
j), y

i
j). (8.11)

This can be done via gradient descent from the initialization ϕ̂ (see Algorithm 2).

Algorithm 2 has similar pipeline as Raghu et al. [2020] where in the inner loop only a linear layer on top of the
embeddings is learned. However, our algorithm is centered on multitask finetuning, where no inner loop is executed.

Finally, we formalize our assumption Assumption 3.3.1 below.

Assumption 8.2.1 (Regularity Conditions). The following regularity conditions hold:

(A1) Representation function ϕ satisfies ∥ϕ∥2 ≤ R.

(A2) Linear operator W satisfies bounded spectral norm ∥W∥2 ≤ B.

(A3) The loss function ℓu are bounded by [0, C] and ℓ(·) is L-Lipschitz.

(A4) The supervised loss Lsup(T , ϕ) is L̃-Lipschitz with respect to ϕ for ∀T .

8.2.1 Contrastive Pretraining

In this section, we will show how multitask finetuning improves the model from contrastive pretraining. We present
pretraining error in binary classification and DT (y) as uniform. See the result for the general condition with multi-class
in Section 8.3.

Contrastive Pretraining and Direct Adaptation

In this section, we show the error bound of a foundation model on a target task, where the model is pretrained by
contrastive loss followed directly by adaptation.

We first show how pretraining guarantees the expected supervised loss:

Lsup(ϕ) = E
T ∼ζ

[Lsup(T , ϕ)] . (8.12)

The error on the target task can be bounded by Lsup(ϕ). We use ϵ∗ denote Lsup(ϕ
∗
ζ).

Lemma 8.2.2 (Lemma 4.3 in Arora et al. [2019]). For ∀ϕ ∈ Φ pretrained in contrastive loss, we have Lsup(ϕ) ≤
1

1−τ (Lcon−pre(ϕ)− τ).

We state the theorem below.

Theorem 8.2.3. Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗
ζ . Suppose

ϕ̂ satisfies L̂con−pre(ϕ̂) ≤ ϵ0. Let τ := Pr
(y1,y2)∼η2

{y1 = y2}. Consider pretraining set Scon−pre =
{
xj , x

+
j , x

−
j

}N
j=1

.

For any δ ≥ 0, if

N ≥ 1

ϵ0

[
8LRRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.
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Then with probability 1− δ, for any target task T0 ⊂ C0,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
1

1− τ
(2ϵ0 − τ)− Lsup(ϕ

∗)

]
+ κ. (8.13)

The pretraining sample complexity is O(RN (Φ)
ϵ0

+ log(1/δ)
ϵ20

). The first term is the Rademacher complexity of the entire
representation space Φ with sample size N . The second term relates to the generalization bound. Pretraining typically
involves a vast and varied dataset, sample complexity is usually not a significant concern during this stage.

Proof of Theorem 8.2.3. Recall in binary classes, Scon−pre =
{
xj , x

+
j , x

−
j

}N
j=1

denote our contrastive training set,
sampled from Dcon(η). Then by Lemma A.2 in Arora et al. [2019], with (A1) and (A3), we have for ∀ϕ ∈ Φ with
probability 1− δ,

Lcon−pre(ϕ)− L̂con−pre(ϕ) ≤
4LRRN (Φ)

N
+ C

√
log 1

δ

N
. (8.14)

To have above ≤ ϵ0, we have sample complexity

N ≥ 1

ϵ0

[
8LRRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.

In pretraining, we have ϕ̂ such that
L̂con−pre(ϕ̂) ≤ ϵ0.

Then with the above sample complexity, we have pretraining ϕ̂

Lcon−pre(ϕ̂) ≤ 2ϵ0.

Recall ν-diversity and κ-consistency, for target task T0, we have that for ϕ̂ and ϕ∗,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) = Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗
ζ) + Lsup(T0, ϕ∗

ζ)− Lsup(T0, ϕ∗) (8.15)

≤ dC0
(ϕ̂, ϕ∗

ζ) + Lsup(T0, ϕ∗
ζ)− Lsup(T0, ϕ∗) (8.16)

≤ d̄ζ(ϕ̂, ϕ
∗
ζ)/ν + κ (8.17)

≤ 1

ν

[
Lsup(ϕ̂)− Lsup(ϕ

∗
ζ)
]
+ κ (8.18)

=
1

ν

[
1

1− τ
(Lcon−pre(ϕ̂)− τ)− ϵ∗

]
+ κ (8.19)

≤ 1

ν

[
1

1− τ
(2ϵ0 − τ)− ϵ∗

]
+ κ, (8.20)

where the second to last inequality comes from Theorem 8.2.2.

Contrastive Pretraining and Multitask Finetuning

In this section, we show the error bound of a foundation model on a target task can be further reduced by multitask
finetuning. We achieve this by showing that expected supervised loss Lsup(ϕ) can be further reduced after multitask
finetuning. The error on the target task can be bounded by Lsup(ϕ). We use ϵ∗ denote Lsup(ϕ

∗
ζ).

Following the intuition in Garg and Liang [2020], we first re-state the definition of representation space.
Definition 8.2.4. The subset of representation space is

Φ(ϵ̃) =
{
ϕ ∈ Φ : L̂pre(ϕ) ≤ ϵ̃

}
.

Recall S = {(xi
j , y

i
j) : i ∈ [M ], j ∈ [m]} as finetuning dataset.

We define two function classes and associated Rademacher complexity.
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Definition 8.2.5. Consider function class

Gℓ(ϵ̃) =
{
gW,ϕ(x, y) : gW,ϕ(x, y) = ℓ(Wϕ(xi

j), y
i
j), ϕ ∈ Φ(ϵ̃), ∥W∥2 ≤ B

}
.

We define Rademacher complexity as

Rn(Gℓ(ϵ̃)) = E
{σi}n

j=1,{xj ,yj}n
j=1

 sup
ℓ∈Gℓ(ϵ̃)

n∑
j=1

σjℓ(W · ϕ(xj), yj)

 .

Definition 8.2.6. Consider function class

G(ϵ̃) = {gϕ : gϕ(T ) = Lsup(T, ϕ), ϕ ∈ Φ(ϵ̃)} .
We define Rademacher complexity as

RM (G(ϵ̃)) = E
{σi}M

i=1,{Ti}M
i=1

[
sup

ϕ∈Φ(ϵ̃)

M∑
i=1

σiLsup(Ti, ϕ)

]
.

The key idea is multitask finetuning further reduce the expected supervised loss of a pretrained foundation model ϕ:

Lsup(ϕ) = E
T ∼ζ

[Lsup(T , ϕ)] . (8.21)

We first introduce some key lemmas. These lemmas apply to general r classes in a task T .
Lemma 8.2.7 (Bounded Rademacher complexity). By (A2) and (A3), we have for ∀n

Rn(Gℓ(ϵ̃)) ≤ 4
√
r − 1LBRn(Φ(ϵ̃)).

Proof of Theorem 8.2.7. We first prove ℓ(g(ϕ(x)), y) is
√
2(r − 1)LB-Lipschitz with respect to ϕ for all ∀y ∈ C.

Consider
fy(g(ϕ(x))) = {g(ϕ(x))y − g(ϕ(x))y′}y′ ̸=y ,

where fy : Rr → Rr−1. Note that

ℓ(g ◦ ϕ(x), y) = ℓ
(
{g(ϕ(x))y − g(ϕ(x))y′}y′ ̸=y

)
= ℓ(fy(g(ϕ(x)))).

By (A3), we have ℓ is L-Lipschitz. We then prove fy is
√
2(r − 1)-Lipschitz. Without loss generality, consider y = r.

We have fy(y) = [yr − yi]
r−1
i=1 . We have ∂fj

yi
= −1{j = i}, i = 1, . . . , r − 1, ∂fj

yr
= 1. The Jacobian J satisfies

∥J∥2 ≤ ∥J∥F =
√
2(r − 1).

Since g is B-Lipschitz by (A2):∥W∥2 ≤ B. Then ℓ(g(ϕ(x)), y) is
√
2(r − 1)LB-Lipschitz with respect to ϕ for all

∀y ∈ C. The conclusion follows Corollary 4 in Maurer [2016].

Lemma 8.2.8 (Bounded ϵ̃). After finite steps in Multitask finetuning in Algorithm 2, we solve Eq. 3.2 with empirical
loss lower than ϵ1 = α

3
1

1−τ (2ϵ0 − τ) and obtain ϕ′. Then there exists a bounded ϵ̃ such that ϕ′ ∈ Φ(ϵ̃).

Proof of Theorem 8.2.8. Given finite number of steps and finite step size γ in Algorithm 2, we have bounded ∥ϕ′ − ϕ̂∥.
Then with (A2) and (A3), using Theorem 8.2.7 we have ℓ(g(ϕ(x)), y) is

√
2(r − 1)LB-Lipschitz with respect to ϕ

for all ∀y, using theorem A.2 in Arora et al. [2019] we have lu is LC-Lipschitz with respect to ϕ, we have L̂pre(ϕ) is
M -Lipschitz with respect to ϕ with bounded M . We have ∃ ϵ such that L̂pre(ϕ

′)− L̂pre(ϕ̂) ≤ ϵ∥ϕ′ − ϕ̂∥. We have
L̂pre(ϕ

′) ≤ ϵ0 + ϵ∥ϕ′ − ϕ̂∥. Take ϵ̃ = ϵ0 + ϵ∥ϕ′ − ϕ̂∥ yields the result.

Lemma 8.2.9. Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗
ζ . Suppose

for some small constant α ∈ (0, 1) and ϵ̃, we solve Eq. 3.2 with empirical loss lower than ϵ1 = α
3

1
1−τ (2ϵ0 − τ) and

obtain ϕ′. For any δ > 0, if

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
8
√
r − 1LBRMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

then expected supervised loss Lsup(ϕ
′) ≤ α 1

1−τ (2ϵ0 − τ), with probability 1− δ.
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Proof of Theorem 8.2.9. Recall S := {(xi
j , y

i
j) : i ∈ [M ], j ∈ [m]} as finetuning dataset. Consider in Eq. 3.2 we have

Ŵ := (Ŵ1, . . . , ŴM ) and ϕ′ such that 1
M

∑M
i=1

1
m

∑m
j=1 ℓ(Ŵi · ϕ′(xi

j), y
i
j) ≤ ϵ1 < α

3 ϵ0.

We tried to bound

Lsup(ϕ
′)− 1

m

m∑
j=1

ℓ(Ŵi · ϕ′(xi
j), y

i
j).

Recall that
Lsup(Ti, ϕ) = min

W∈Rr×d
E

y∼Ti

E
x∼D(y)

[ℓ (W · ϕ(x), y)] .

For ∀ϕ ∈ Φ(ϵ̃)

Lsup(ϕ) = ET ∼ζ [Lsup(T , ϕ)] = ET ∼ζ

[
min

W∈Rr×d
E

y∼T
E

x∼D(y)
[ℓ (W · ϕ(x), y)]

]
.

We have for ∀ϕ ∈ Φ(ϵ̃), by uniform convergence (see Mohri et al. [2018] Theorem 3.3), we have with probability
1− δ/2

ET ∼ζ [Lsup(T , ϕ)]−
1

M

M∑
i=1

Lsup(Ti, ϕ) ≤
2RM (G(ϵ̃))

M
+

√
log(2/δ)

M
(8.22)

≤2
√
2L̃RM (Φ(ϵ̃))

M
+

√
log(2/δ)

M
, (8.23)

where the last inequality comes from (A4) and Corollary 4 in Maurer [2016]. To have above ≤ ϵ1/2, we have sample
complexity

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
.

Then we consider generalization bound for ∀ϕ and W := (W1, . . . ,WM )

Lsup(ϕ,W) =
1

M

M∑
i=1

E
yi∼Ti

E
xi∼D(yi)

ℓ
(
Wi · ϕ(xi), yi

)
(8.24)

L̂sup(ϕ,W) =
1

M

M∑
i=1

1

m

m∑
j=1

ℓ(Wi · ϕ(xi
j), y

i
j), (8.25)

where W = (W1, . . . ,WM ).

By uniform convergence (see Mohri et al. [2018] Theorem 3.3), we have with probability 1− δ/2,

Lsup(ϕ,W)− L̂sup(ϕ,W) ≤ 2RMm(Gℓ)
Mm

+

√
log(2/δ)

Mm
≤ 8
√
r − 1LBRMm(Φ(ϵ̃))

Mm
+ C

√
log(2/δ)

Mm
,

where the last inequality comes from Theorem 8.2.7. To have above ≤ ϵ1/2, we have sample complexity

Mm ≥ 1

ϵ1

[
8
√
r − 1LBRMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

satisfying ∀ϕ ∈ Φ(ϵ̃)

1

M

M∑
i=1

Lsup(Ti, ϕ) =
1

M

M∑
i=1

min
W∈Rr×d

E
y∼Ti

E
x∼D(y)

[ℓ (W · ϕ(x), y)]

≤ 1

M

M∑
i=1

E
y∼Ti

E
x∼D(y)

[
ℓ
(
Ŵi · ϕ(x), y

)]
= Lsup(ϕ,Ŵ)

≤ L̂sup(ϕ,Ŵ) + ϵ1/2.
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Then combine above with Eq. 8.22

Lsup(ϕ) = E
T ∼ζ

[Lsup(T , ϕ)]

≤ L̂sup(ϕ,Ŵ) + ϵ1.

We have

Lsup(ϕ
′)− 1

m

m∑
j=1

ℓ(Ŵi · ϕ′(xi
j), y

i
j) ≤ ϵ1

Lsup(ϕ
′) ≤ 2ϵ1 ≤ α

1

1− τ
(2ϵ0 − τ).

The boundedness of ϵ̃ follows Theorem 8.2.8.

We state the theorem below.
Theorem 8.2.10. Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗

ζ .
Suppose for some small constant α ∈ (0, 1), we solve Eq. 3.2 with empirical loss lower than ϵ1 = α

3
1

1−τ (2ϵ0 − τ) and
obtain ϕ′. For any δ > 0, if

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
8LBRMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

then with probability 1− δ, for any target task T0 ⊆ C0,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν

[
α

1

1− τ
(2ϵ0 − τ)− Lsup(ϕ

∗
ζ)

]
+ κ. (8.26)

Proof of Theorem 8.2.10. Recall with ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗
ζ , for target task T0, we have

that for ϕ′ and ϕ∗,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) = Lsup(T0, ϕ′)− Lsup(T0, ϕ∗
ζ) + Lsup(T0, ϕ∗

ζ)− Lsup(T0, ϕ∗)

≤ 1

ν
d̄ζ(ϕ

′, ϕ∗
ζ) + κ

≤ 1

ν

[
Lsup(ϕ

′)− Lsup(ϕ
∗
ζ)
]
+ κ

≤ 1

ν

[
α

1

1− τ
(2ϵ0 − τ)− ϵ∗

]
+ κ,

where the last inequality comes from Theorem 8.2.9, where taking r = 2.

8.2.2 Supervised Pretraining

In this section, we will show how multitask finetuning improves the model from supervised pretraining. We present
pretraining error in binary classification and DT (y) as uniform. See the result for the general condition with multi-class
in Section 8.3.

Supervised Pretraining and Direct Adaptation

In this section, we show the error bound of a foundation model on a target task, where the model is pretrained by
supervised loss followed directly by adaptation. For general y ∼ η. Let pi := Pr

y∼η
{y = yi}, where

∑K
i=1 pi = 1.

Lemma 8.2.11. Suppose y ∼ η and l ≤ Pr
y∼η
{y = yi} ≤ u. Consider a task T containing r classes, which is a subset

of the total class set C. We have ∀ϕ ∈ Φ,

Lsup(ϕ) ≤
(u
l

)r
Lsup−pre(ϕ),

where

Lsup−pre(ϕ) = min
f∈F

E
x,y

[ℓ (f ◦ ϕ(x), y)] . (8.27)
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Proof of Section 8.2.2. We first prove r = 3, where T = {y1, y2, y3}. Then in supervised pretraining, we have:

Lsup−pre(ϕ) = min
f∈F

E
y∼T

E
x∼y

[ℓ (f ◦ ϕ(x), y)] . (8.28)

Let f = (f1, f2, f3)
⊤ be the best linear classifier on top of ϕ, the prediction logits are g(x) = f ◦ ϕ(x) =

(g1(x), g2(x), g3(x))
⊤. Then we have:

E
x∼y1

[ℓ (g ◦ ϕ(x), y)] = − log
exp(g1(x))∑3
k=1 exp(gk(x))

.

We let yk(x) = exp(gk(x)), k = 1, 2, 3. Then

Lsup−pre(ϕ)

=−

[
p1 E

x∼y1

(
log

y1(x)∑3
k=1 yk(x)

)
+ p2 E

x∼y2

(
log

y2(x)∑3
k=1 yk(x)

)
+ p3 E

x∼y3

(
log

y3(x)∑3
k=1 yk(x)

)]

=p1 E
x∼y1

(
log

∑3
k=1 yk(x)

y1(x)

)
+ p2 E

x∼y2

(
log

∑3
k=1 yk(x)

y2(x)

)
+ p3 E

x∼y3

(
log

∑3
k=1 yk(x)

y3(x)

)
.

Recall

Lsup(T , ϕ) := min
w

E
y∼T

E
x∼D(y)

[
ℓ
(
w⊤ϕ(x), y

)]
. (8.29)

Consider

L∗
sup(T , ϕ) := E

y∼T
E

x∼D(y)

[
ℓ
(
w⊤ϕ(x), y

)]
, (8.30)

where w is the corresponding sub-vector of f according to task (for e.g., w = (f1, f2)
⊤ if T = {y1, y2}). Then we

have

L∗
sup(T , ϕ) =−

p1p2
p1p2 + p1p3 + p2p3

· 1
2

[
E

x∼y1

(
log

y1(x)

y1(x) + y2(x)

)
+ E

x∼y2

(
log

y2(x)

y1(x) + y2(x)

)]
− p1p3

p1p2 + p1p3 + p2p3
· 1
2

[
E

x∼y1

(
log

y1(x)

y1(x) + y3(x)

)
+ E

x∼y3

(
log

y3(x)

y1(x) + y3(x)

)]
− p2p3

p1p2 + p1p3 + p2p3
· 1
2

[
E

x∼y2

(
log

y2(x)

y2(x) + y3(x)

)
+ E

x∼y3

(
log

y3(x)

y2(x) + y3(x)

)]
=

p1p2
p1p2 + p1p3 + p2p3

· 1
2

[
E

x∼y1

(
log

y1(x) + y2(x)

y1(x)

)
+ E

x∼y2

(
log

y1(x) + y2(x)

y2(x)

)]
p1p3

p1p2 + p1p3 + p2p3
· 1
2

[
E

x∼y1

(
log

y1(x) + y3(x)

y1(x)

)
+ E

x∼y3

(
log

y1(x) + y3(x)

y3(x)

)]
p2p3

p1p2 + p1p3 + p2p3
· 1
2

[
E

x∼y2

(
log

y2(x) + y3(x)

y2(x)

)
+ E

x∼y3

(
log

y2(x) + y3(x)

y3(x)

)]
.

By observing the terms with y1(x) as denominator (similar as y2(x), y3(x)), we want to prove:

p1

(u
l

)2
≥ 1

2

(
p1p2 + p1p3

p1p2 + p1p3 + p2p3

)
.

This obtained by
(
u
l

)2 ≥ 1
3

u
l2 .

We have
L∗
sup(T , ϕ) ≤

(u
l

)2
Lsup−pre(ϕ).

For the general K-class setting, we follow similar steps, we have

Lsup−pre(ϕ) = −

[
r∑

i=1

pi E
x∼yi

(
log

yi(x)∑K
k=1 yk(x)

)]
.
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We denote J as all possible r product of pi ∈ {p1, . . . , pK}, J = {p1 · · · pr, . . .}. Similarly, we have

L∗
sup(T , ϕ) = −

1

r

∑
T ⊊C

[∏
i∈T pi

J

∑
i∈T

E
x∼yi

(
log

yi(x)∑
j∈T yj(x)

)]
where T are all tasks with r classes. By observing, inside the summation there are in total

(
K−1
r−1

)
terms with y1(x) as

the numerator, where corresponding probability is

p1
∏

i∈T ,i̸=1 pi

J
,

where each term can be upper bounded by −
(
u
l

)r
p1 E

x∼yi

(
log yi(x)∑K

k=1 yk(x)

)
(similar as yj(x), j ∈ T ).

We state the theorem below.
Theorem 8.2.12. Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗

ζ .

Suppose ϕ̂ satisfies L̂sup−pre(ϕ̂) ≤ ϵ0. Let pi := Pr
y∼η
{y = yi} , where

∑K
i=1 pi = 1. Let ρ := maxi pi

minj pj
. Consider

pretraining set Ssup−pre := {xi, yi}Ni=1, for any δ ≥ 0, if

N ≥ 1

ϵ0

[
8LR
√
KRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.

Then with probability 1− δ, for any target task T0 ⊂ C0,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
2ρ2ϵ0 − ϵ∗

]
+ κ. (8.31)

Proof of Theorem 8.2.12. The proof follows similar steps in Theorem 8.2.3. For supervised pretraining, the sample
complexity is similar to Theorem 8.2.3, note that there is an extra

√
K term. We show how we have this term below:

Consider function class

Gℓ =
{
gW,ϕ(x, y) : gW,ϕ(x, y) = ℓ(W⊤ϕ(xi

j), y
i
j), ϕ ∈ Φ, ∥W∥2 ≤ B

}
.

The Rademacher complexity is

Rn(Gℓ) = E
{σi}n

j=1,{xj ,yj}n
j=1

sup
ℓ∈Gℓ

n∑
j=1

σjℓ(W · ϕ(xj), yj)

 .

Then from Theorem 8.2.7, the pretraining is a large task with classification among K classes.

Rn(Gℓ) ≤ 4
√
KLBRn(Φ).

Then by Theorem 3.3 in Mohri et al. [2018], with (A1) and (A3), we have for ∀ϕ ∈ Φ with probability 1− δ,

Lsup−pre(ϕ)− L̂sup−pre(ϕ) ≤
4LR
√
KRN (Φ)

N
+ C

√
log 1

δ

N
. (8.32)

To have above ≤ ϵ0, we have sample complexity

N ≥ 1

ϵ0

[
8LR
√
KRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.

With the above sample complexity of Ssup−pre = {xi, yi}Ni=1, we have pretraining ϕ̂

Lsup−pre(ϕ̂) ≤ 2ϵ0.

Recall ν-diversity and κ-consistency, with respect to ϕ∗, ϕ∗
ζ , for target task T0, we have that for ϕ̂ and ϕ∗,
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Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ dC0
(ϕ̂, ϕ∗

ζ) + Lsup(T0, ϕ∗
ζ)− Lsup(T0, ϕ∗) (8.33)

≤ d̄ζ(ϕ̂, ϕ
∗
ζ)/ν + κ (8.34)

≤ 1

ν

[
Lsup(ϕ̂)− Lsup(ϕ

∗
ζ)
]
+ κ (8.35)

≤ 1

ν

[
ρ2Lsup−pre(ϕ̂)− ϵ∗

]
+ κ (8.36)

≤ 1

ν

[
2ρ2ϵ0 − ϵ∗

]
+ κ (8.37)

where the second to last inequality comes from Theorem 8.2.11.

Supervised Pretraining and Multitask Finetuning

In this section, we show the error bound of a supervised pretrained foundation model on a target task can be fur-
ther reduced by multitask finetuning. We follow similar steps in Section 8.2.1. Recall Definition 8.2.4, similar to
Theorem 8.2.9, we introduce the following lemma under supervised pretraining loss.
Lemma 8.2.13. Assume Assumption 3.3.1 and that Φ has (ν, ϵ)-diversity for ζ and C0. Suppose for some small constant
α ∈ (0, 1), we solve Eq. 3.2 with empirical loss lower than ϵ1 = α

3 2ρ
2ϵ0 and obtain ϕ′. For any δ > 0, if

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
16LBRMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

then expected supervised loss Lsup(ϕ
′) ≤ 2αρ2ϵ0, with probability 1− δ.

Proof of Theorem 8.2.13. The steps follow similar steps in Theorem 8.2.9.

We state the main theorem below.
Theorem 8.2.14. Assume Assumption 3.3.1 and that Φ has (ν, ϵ)-diversity for ζ and C0. Suppose for some small
constant α ∈ (0, 1), we solve Eq. 3.2 with empirical loss lower than ϵ1 = α

3 2ρ
2ϵ0 and obtain ϕ′. For any δ > 0, if

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
16LBRMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

then with probability 1− δ, for any target task T0 ⊆ C0,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν

(
2αρ2ϵ0 − Lsup(ϕ

∗)
)
+ ϵ. (8.38)

Proof of Theorem 8.2.14. Recall ν-diversity and κ-consistency, with respect to ϕ∗, ϕ∗
ζ , for target task T0, we have that

for ϕ̂ and ϕ∗,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ dC0(ϕ
′, ϕ∗

ζ) + Lsup(T0, ϕ∗
ζ)− Lsup(T0, ϕ∗) (8.39)

≤ d̄ζ(ϕ
′, ϕ∗

ζ)/ν + κ (8.40)

≤ 1

ν

[
Lsup(ϕ

′)− Lsup(ϕ
∗
ζ)
]
+ κ (8.41)

≤ 1

ν

(
2αρ2ϵ0 − ϵ∗

)
+ κ, (8.42)

where the last inequality comes from Theorem 8.2.13.

8.2.3 Masked Language Pretraining

The theoretical guarantee in masked language pretraining follows the same error bound in supervised pretraining, with
K representing the size of the vocabulary.
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8.2.4 Unified Main Theory

We now prove the main theory below. We first re-state the theorem.

Theorem 3.3.4. (No Multitask Finetuning) Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency
with respect to ϕ∗ and ϕ∗

ζ . Suppose ϕ̂ satisfies L̂pre(ϕ̂) ≤ ϵ0. Let τ := Pr
(y1,y2)∼η2

{y1 = y2}. Then for any target task

T0 ⊆ C0,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
2ϵ0
1− τ

− Lsup(ϕ
∗
ζ)

]
+ κ. (3.3)

Proof of Theorem 3.3.4. The result is a direct combination of Theorem 8.2.3 and Theorem 8.2.12.

Theorem 3.3.5. (With Multitask Finetuning) Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency
with respect to ϕ∗ and ϕ∗

ζ . Suppose for some constant α ∈ (0, 1), we solve Eq. 3.2 with empirical loss lower than

ϵ1 = α
3

2ϵ0
1−τ and obtain ϕ′. For any δ > 0, if for ϵ̃ = L̂pre(ϕ

′),

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
16LBRMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

then with probability 1− δ, for any target task T0 ⊆ C0,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν

[
α

2ϵ0
1− τ

− Lsup(ϕ
∗
ζ)

]
+ κ. (3.4)

Proof of Theorem 3.3.5. Follow the similar steps in proof of Theorem 8.2.9, we have

Lsup(ϕ
′) ≤ 2ϵ1 ≤ α

2ρ2

1− τ
ϵ0.

Recall ν-diversity and κ-consistency, with respect to ϕ∗, ϕ∗
ζ , for target task T0, we have that for ϕ′ and ϕ∗,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ dC0
(ϕ′, ϕ∗

ζ) + Lsup(T0, ϕ∗
ζ)− Lsup(T0, ϕ∗) (8.43)

≤ d̄ζ(ϕ
′, ϕ∗

ζ)/ν + κ (8.44)

≤ 1

ν

[
Lsup(ϕ

′)− Lsup(ϕ
∗
ζ)
]
+ κ (8.45)

≤ 1

ν

[
α

2ρ2

1− τ
ϵ0 − ϵ∗

]
+ κ. (8.46)

The sample complexity of finetuning depends on ϵ̃ = L̂pre(ϕ
′). Below we show that ϵ̃ can be upper bounded in finite

step finetuning.

Lemma 8.2.15 (Bounded ϵ̃). After finite steps in Multitask finetuning in Algorithm 2, we solve Eq. 3.2 with empirical
loss lower than ϵ1 = α

3
1

1−τ (2ϵ0 − τ) and obtain ϕ′. Then there exists a bounded ϵ̃ such that ϕ′ ∈ Φ(ϵ̃).

Proof of Theorem 8.2.15. Given finite number of steps and finite step size γ in Algorithm 2, we have bounded ∥ϕ′− ϕ̂∥.
Then with (A2) and (A3), using Theorem 8.2.7 and lemma A.3 in Arora et al. [2019], we have L̂pre(ϕ) is M -
Lipschitz with respect to ϕ with bounded M . We have ∃ ϵ such that L̂pre(ϕ

′) − L̂pre(ϕ̂) ≤ ϵ∥ϕ′ − ϕ̂∥. We have
L̂pre(ϕ

′) ≤ ϵ0 + ϵ∥ϕ′ − ϕ̂∥. Take ϵ̃ = ϵ0 + ϵ∥ϕ′ − ϕ̂∥ yields the result.
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8.2.5 Bounded Task Loss by Task Diversity

By the previous lemma and claim, we have the below corollary.

Corollary 8.2.16. Suppose we have ϕ in pretraining: for ∀ϕ ∈ Φ, Lsup(ϕ) ≤ 1
1−τ

(
u
l

)r Lpre(ϕ), where Lpre(ϕ) is
Lcon−pre(ϕ) if contrastive learning and Lsup−pre(ϕ) if supervised learning.

Consider ρ = u
l and Theorem 8.2.16,

Recall ν-diversity and κ-consistency, with respect to ϕ∗, ϕ∗
ζ , for target task T0, we have that for ϕ̂ and ϕ∗,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ dC0
(ϕ̂, ϕ∗

ζ) + Lsup(T0, ϕ∗
ζ)− Lsup(T0, ϕ∗) (8.47)

≤ d̄ζ(ϕ̂, ϕ
∗
ζ)/ν + κ (8.48)

≤ 1

ν

[
Lsup(ϕ̂)− Lsup(ϕ

∗
ζ)
]
+ κ (8.49)

≤ 1

ν

[
ρr

1− τ
Lpre(ϕ̂)− Lsup(ϕ

∗)

]
+ κ. (8.50)

8.3 Multi-class Classification

In this section, we provide a general result for multi-classes.

8.3.1 Contrastive Pretraining

Lemma 8.3.1 (Theorem 6.1 in Arora et al. [2019]). For multi-classes, we have

Lsup(ϕ) ≤ Lµ
sup(ϕ) ≤

1

1− τr
Lcon−pre(ϕ), (8.51)

where τr = E
(y,y−

1 ,...,y−
r−1)∼ηr

1{y does not appear in (y−1 , . . . , y
−
r−1)}.

Proof of Theorem 8.3.1. The proof of Theorem 8.3.1 follows the first two steps in the proof of Theorem B.1 of Arora
et al. [2019]. we denote distribution of y ∼ T as DT (y) and it’s uniform distribution.

We first provide contrastive pretraining error similar to Theorem 8.2.3 in a multiclass setting.

Theorem 8.3.2. Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗
ζ . Suppose

ϕ̂ satisfies L̂con−pre(ϕ̂) ≤ ϵ0. Consider a pretraining set Sun =
{
xj , x

+
j , x

−
j1, . . . , xj(r−1)

}N
j=1

. For target task T0,
with sample complexity

N ≥ 1

ϵ0

[
8LR
√
r − 1RN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
,

it’s sufficient to learn an ϕ̂ with classification error Lsup(T0, ϕ̂)−Lsup(T0, ϕ∗) ≤ 1
ν

[
2

1−τr
ϵ0 − ϵ∗

]
+ϵ, with probability

1− δ.

Proof of Theorem 8.3.2. Following similar step of proof of Theorem 8.2.3, we have with

N ≥ 1

ϵ0

[
8LR
√
r − 1RN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.

Then pretraining ϕ̂

Lcon−pre(ϕ̂) ≤ 2ϵ0.

Recall ν-diversity and κ-consistency, for target task T0, we have that for ϕ̂ and ϕ∗,
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Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ d̄ζ(ϕ̂, ϕ
∗
ζ)/ν + κ (8.52)

≤ 1

ν

[
Lsup(ϕ̂)− Lsup(ϕ

∗
ζ)
]
+ κ (8.53)

(8.54)

Consider Theorem 8.3.1, we have:

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
1

1− τr
Lcon−pre(ϕ̂)− ϵ∗

]
+ κ (8.55)

=
1

ν

(
2ϵ0

1− τr
− ϵ∗

)
+ κ. (8.56)

Below, we provide our main result similar to Theorem 8.2.10 for multi-classes setting.

Theorem 8.3.3. For target evaluation task T0, consider the error bound in pretraining is Lsup(T0, ϕ̂)−Lsup(T0, ϕ∗) ≤
1
ν

[
2ϵ0
1−τr

− ϵ∗
]
+ κ. Consider α as any small constant, for any ϵ1 < α

3
2ϵ0
1−τr

, consider a multitask finetuning set

S = {(xi
j , y

i
j) : i ∈ [M ], j ∈ [m]}, with M number of tasks, and m number of samples in each task. Then, with sample

complexity

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
Mm ≥ 1

ϵ1

[
8LB
√
r − 1RMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
.

Solving Eq. 3.2 with empirical risk lower than ϵ1 is sufficient to learn an ϕ′ with classification error Lsup(T0, ϕ′)−
Lsup(T0, ϕ∗) ≤ 1

ν (α
2ϵ0
1−τr

− ϵ∗) + κ, with probability 1− δ.

Proof of Theorem 8.3.3. Recalling Theorem 8.2.7 and Theorem 8.2.9, the proof follows the same steps in the proof of
Theorem 8.2.10, with different r.

8.3.2 Supervised Pretraining

We first provide contrastive pretraining error similar to Theorem 8.2.12 in the multiclass setting.

Theorem 8.3.4. Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗
ζ . Suppose

ϕ̂ satisfies L̂sup−pre(ϕ̂) ≤ ϵ0. Let pi := Pr
y∼η
{y = yi} , where

∑K
i=1 pi = 1. Let ρ := maxi pi

minj pj
. Consider pretraining

set Ssup−pre := {xi, yi}Ni=1, for any δ ≥ 0, if

N ≥ 1

ϵ0

[
8LR
√
KRN (Φ) +

8C2

ϵ0
log(

2

δ
)

]
.

Then with probability 1− δ, for any target task T0 ⊂ C0,

Lsup(T0, ϕ̂)− Lsup(T0, ϕ∗) ≤ 1

ν

[
2ρrϵ0 − Lsup(ϕ

∗
ζ)
]
+ κ. (8.57)

Proof of Theorem 8.3.4. The proof follows similar steps of Theorem 8.2.12.

Below, we provide our main result similar to Theorem 8.2.14 for multi-classes setting.
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Theorem 8.3.5. Assume Assumption 3.3.1 and that Φ has ν-diversity and κ-consistency with respect to ϕ∗, ϕ∗
ζ . Suppose

for some small constant α ∈ (0, 1), we solve Eq. 3.2 with empirical loss lower than ϵ1 = α
3 2ρ

rϵ0 and obtain ϕ′. For
any δ > 0, if

M ≥ 1

ϵ1

[
4
√
2L̃RM (Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,Mm ≥ 1

ϵ1

[
8LB
√
r − 1RMm(Φ(ϵ̃)) +

4C2

ϵ1
log(

2

δ
)

]
,

then with probability 1− δ, for any target task T0 ⊆ C0,

Lsup(T0, ϕ′)− Lsup(T0, ϕ∗) ≤ 1

ν

(
2αρrϵ0 − Lsup(ϕ

∗
ζ)
)
+ κ. (8.58)

Proof of Theorem 8.3.5. Recalling Theorem 8.2.7 and Theorem 8.2.9, the proof follows the same steps in the proof of
Theorem 8.2.14, with different r.

8.4 Linear Case Study

In this section, we provide a full analysis of the linear case study to provide intuition about our consistency, diversity,
and task selection algorithm. Intuitively, we have multiple classes, each centered around its mean vector. Target data
has a subset of classes, while training data has another subset of classes. Consistency and diversity are related to how
these two subsets overlap, i.e., the number of shared features and the number of disjoint features. Then, we can link it
to the task selection algorithm.

In this section, zi means the i-th dimension of vector z rather than the sample index.

8.4.1 Problem Setup

Linear Data and Tasks. We consider dictionary learning or sparse coding settings, which is a classic data model
(e.g., Olshausen and Field [1997]; Vinje and Gallant [2000]; Blei et al. [2003]; Shi et al. [2022, 2023c]). Let X ⊆ Rd be
the input space and we have input data x ∈ X . Suppose Q ∈ Rd×D is an unknown dictionary with D columns that can
be regarded as patterns or features. For simplicity, assume d = D and Q is orthonormal. We have z ∈ {0,−1,+1}d as
a latent class, where z is a hidden vector that indicates the presence of each pattern. Each latent class z has a distribution
Dz(x) over inputs x. We assume Dz(x) be a distribution with mean Qz, i.e., x = Qz + ez , where ez ∈ Rd is some
noise vector drawing from a zero-mean distribution.

For simplicity, we consider each task to be a binary classification task, where Y = {−1,+1} is the label space. In each
task (in multitask finetuning or target task), we have two latent classes z, z′ (denote the task as Tz,z′ ) and we randomly
assign −1 and +1 to each latent class. W.l.o.g., we have in Tz,z′ :

x =

{
Qz + ez, if y = −1
Qz′ + ez′ , if y = +1.

(8.59)

For simplicity, we consider a balanced class setting in all tasks, i.e., p(y = −1) = p(y = +1) = 1
2 .

Now, we define multitask finetuning tasks and target tasks. Suppose there is a set of latent classes C ⊆ {0,−1,+1}d
used for multitask finetuning tasks, which has an index set JC ⊆ [d], kC := |JC | such that for any z ∈ C, we have
zJC ∈ {−1,+1}kC and z[d]\JC ∈ {0}d−kC . Similarly, suppose there is a set of latent classes C0 ⊆ {0,−1,+1}d used
for target tasks whose index set is J0 ⊆ [d], k0 := |J0|. Note that JC may or may not overlap with J0 and denote the
set of features encoded both by C0 and C as LC := J0 ∩ JC , lC := |LC |. Intuitively, LC represents the target features
covered by training data. Let ζ over C × C be the distribution of multitask finetuning tasks. Then, in short, our data
generation pipeline for multitask finetuning tasks is (1) sample two latent classes (z, z′) ∼ ζ as a task Tz,z′ ; (2) assign
label −1,+1 to two latent classes; (3) sample input data from Dz(x) and Dz′(x) with balanced probabilities.

For simplicity, we have a symmetric assumption and a non-degenerate assumption for ζ. Symmetric assumption means
each dimension is equal important and non-degenerate assumption means any two dimensions are not determined by
each other in all tasks.

Assumption 8.4.1 (Symmetric). We assume for any multitask finetuning tasks distribution ζ, for any j, k ∈ JC ,
switching two dimensions zj and zk does not change the distribution ζ.

Assumption 8.4.2 (Non-degenerate). We assume for any multitask finetuning tasks distribution ζ, for any j, k ∈ JC ,
over ζ we have p(zj = z′j , zk ̸= z′k) > 0.
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Remark 8.4.1. There exists many ζ satisfying above assumptions, e.g., (1) zJC and z′JC
uniformly sampling from

{−1,+1}kC ; or (2) let kC = 2, zJC and z′JC
uniformly sampling from {(+1,+1), (−1,+1), (+1,−1)} (note that

uniformly sampling from {(+1,+1), (−1,−1)} does not satisfy non-degenerate assumption). Also, we note that even
when C = C0, the target latent class may not exist in the multitask finetuning tasks.

Linear Model and Loss Function. Let Φ be the hypothesis class of models ϕ : X → Z , where Z ⊆ Rd is the output
space of the model. We consider a linear model class with regularity Assumption 3.3.1, i.e., Φ = {ϕ ∈ Rd×d : ∥ϕ∥F ≤
R} and linear head w ∈ Rd where ∥w∥2 ≤ B. Thus, the final output of the model and linear head is w⊤ϕx. We use
linear loss in Shi et al. [2023a], i.e., ℓ

(
w⊤ϕx, y

)
= −yw⊤ϕx and we have

Lsup(T , ϕ) := min
w∈Rd,∥w∥2≤B

E
z,y∼T

E
x∼Dz(x)

[
ℓ
(
w⊤ϕx, y

)]
(8.60)

Lsup(ϕ) := E
T ∼ζ

[Lsup(T , ϕ)] (8.61)

ϕ∗
ζ := argmin

ϕ∈Φ
Lsup(ϕ), (8.62)

where ϕ∗
ζ is the optimal representation for multitask finetuning.

8.4.2 Diversity and Consistency Analysis

Optimal Representation for Multitask Finetuning

Lemma 8.4.3. Assume Assumption 8.4.1 and Assumption 8.4.2. We have ϕ∗
ζ = UΛ∗Q−1, where U is any orthonormal

matrix, Λ∗ = diag(λ∗). For any i ∈ JC , λ∗
i = R√

kC
and λ∗

i = 0 otherwise.

Proof of Theorem 8.4.3. We have the singular value decomposition ϕ = UΛV ⊤, where Λ = diag(λ), where λ ∈ Rd.
Then, we have

Lsup(ϕ) = E
T ∼ζ

[Lsup(T , ϕ)] (8.63)

= E
T ∼ζ

[
min

w∈Rd,∥w∥2≤B
E

z,y∼T
E

x∼Dz(x)

[
ℓ
(
w⊤ϕx, y

)]]
(8.64)

= E
Tz,z′∼ζ

[
min

w∈Rd,∥w∥2≤B

1

2

(
E

x∼Dz(x)

[
ℓ
(
w⊤ϕx,−1

)]
+ E

x∼Dz′ (x)

[
ℓ
(
w⊤ϕx,+1

)])]
(8.65)

=
1

2
E

Tz,z′∼ζ

[
min

w∈Rd,∥w∥2≤B
E

x∼Dz(x)

[
w⊤ϕx

]
+ E

x∼Dz′ (x)

[
−w⊤ϕx

]]
(8.66)

=
1

2
E

Tz,z′∼ζ

[
min

w∈Rd,∥w∥2≤B
w⊤ϕQz − w⊤ϕQz′

]
(8.67)

= −B

2
E

Tz,z′∼ζ
[∥ϕQ(z − z′)∥2] (8.68)

= −B

2
E

Tz,z′∼ζ

[
∥ΛV ⊤Q(z − z′)∥2

]
. (8.69)

W.l.o.g., we can assume V ⊤ = Q−1. As ∥ϕ∥F = ∥Λ∥F = ∥λ∥2 thus we have
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min
ϕ∈Φ
Lsup(ϕ) = −

B

2
max

∥Λ∥F≤R
E

Tz,z′∼ζ
[∥Λ(z − z′)∥2]

= −B

2
max

∥λ∥2≤R
E

Tz,z′∼ζ


√√√√ d∑

i=1

λ2
i (zi − z′i)

2


= −B

2
max

∥λ∥2=R
E

Tz,z′∼ζ


√√√√ d∑

i=1

λ2
i (zi − z′i)

2


= −B max

∥λ∥2=R
E

Tz,z′∼ζ

√∑
i∈JC

λ2
i1[zi ̸= z′i]

 , (8.70)

where 1[zi ̸= z′i] is a Boolean function, mapping True to 1 and False to 0.

Let ϕ∗
ζ = UΛ∗Q−1 with corresponding λ∗. Now, we use contradiction to prove for any j, k ∈ JC , we have λ∗

j = λ∗
k.

W.l.o.g., suppose λ∗
j < λ∗

k,

Lsup(ϕ
∗
ζ)

= −B E
Tz,z′∼ζ

√λ∗2
j 1[zj ̸= z′j ] + λ∗2

k 1[zk ̸= z′k] +
∑

i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]


= −B

{
p(zj ̸= z′j , zk ̸= z′k) E

Tz,z′∼ζ

√λ∗2
j + λ∗2

k +
∑

i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj ̸= z′j , zk ̸= z′k


+ p(zj = z′j , zk ̸= z′k) E

Tz,z′∼ζ

√λ∗2
k +

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj = z′j , zk ̸= z′k


+ p(zj ̸= z′j , zk = z′k) E

Tz,z′∼ζ

√λ∗2
j +

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj ̸= z′j , zk = z′k

}.
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By symmetric Assumption 8.4.1 and non-degenerate Assumption 8.4.2, we have p(zj = z′j , zk ̸= z′k) = p(zj ̸=
z′j , zk = z′k) > 0, and

E
Tz,z′∼ζ

√λ∗2
k +

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj = z′j , zk ̸= z′k


+ E

Tz,z′∼ζ

√λ∗2
j +

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj ̸= z′j , zk = z′k


= E

Tz,z′∼ζ

√λ∗2
k +

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj = z′j , zk ̸= z′k


+ E

Tz,z′∼ζ

√λ∗2
j +

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zk ̸= z′k, zj = z′j


<2 E

Tz,z′∼ζ

√√√√λ∗2
j + λ∗2

k

2
+

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj = z′j , zk ̸= z′k


= E

Tz,z′∼ζ

√√√√λ∗2
j + λ∗2

k

2
+

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zj = z′j , zk ̸= z′k


+ E

Tz,z′∼ζ

√√√√λ∗2
j + λ∗2

k

2
+

∑
i∈JC\{j,k}

λ∗2
i 1[zi ̸= z′i]

∣∣∣∣∣∣zk ̸= z′k, zj = z′j

 .

where two equality follows Assumption 8.4.1 and the inequality follows Jensen’s inequality. Let ϕ′ = UΛ′Q−1 with

corresponding λ′, where λ′
j = λ′

k =

√
λ∗2
j +λ∗2

k

2 and for any i ∈ JC \ {j, k}, λ′
i = λ∗

i . We have ∥ϕ′∥F = ∥ϕ∗
ζ∥F and

Lsup(ϕ
∗
ζ) > Lsup(ϕ

′) which is a contradiction as we have ϕ∗
ζ is the optimal solution. Thus, for any j, k ∈ JC , we have

λ∗
j = λ∗

k and we finish the proof under simple calculation.

Now, we are ready to analyze consistency and diversity under this linear case study.

Consistency

The intuition is that ζ not only covers C0 but contains too much unrelated information. Recall that the consistent term in
Definition 3.3.3 is κ = supT0⊆C0

[
Lsup(T0, ϕ∗

ζ)− Lsup(T0, ϕ∗
0)
]
.

We first define some notation we will use later. Let ζ0 be a multitask finetuning tasks distribution over C0 × C0 and
denote the corresponding optimal representation model as ϕ∗

0. Suppose for any target task T0 contains two latent
classes z, z′ from C0. W.l.o.g., denote z, z′ differ in n0 entries (1 ≤ n0 ≤ k0), whose nC entries fall in LC , where
0 ≤ nC ≤ n0. Then, we get the lemma below:

Lemma 8.4.4. Assume Assumption 8.4.1 and Assumption 8.4.2. We have

κ = sup
T0⊆C0

[
Lsup(T0, ϕ∗

ζ)− Lsup(T0, ϕ∗
0)
]
= BR

(√
n0

k0
−
√

nC

kC

)
. (8.71)

Proof of Theorem 8.4.4. Recall 1 ≤ n0 ≤ k0 and 0 ≤ nC ≤ n0. By Theorem 8.4.3, we have ϕ∗
ζ = UΛ∗Q−1, where

U is any orthonormal matrix, Λ∗ = diag(λ∗). For any i ∈ JC , λ∗
i = R√

kC
and λ∗

i = 0 otherwise. We also have

ϕ∗
0 = U0Λ

∗
0Q

−1, where U0 is any orthonormal matrix, Λ∗
0 = diag(λ0,∗). For any i ∈ J0, λ0,∗

i = R√
k0

and λ0,∗
i = 0

58



Adaptation of Foundation Models

otherwise. Thus, we have

κ = sup
T0⊆C0

[
Lsup(T0, ϕ∗

ζ)− Lsup(T0, ϕ∗
0)
]

(8.72)

= BR

(√
n0

k0
−
√

nC

kC

)
. (8.73)

Let n′
C = kC − nC . Note this kC is an increasing factor if C contains more features. Moreover, nC is the number of

features encoded by both target and training data, representing the information of target data covered by training data,
nC increases as more target information covered by training data, the loss will decrease. n′

C is the number of features
encoded in training data but not encoded by target data, representing the un-useful information, n′

C increases as more
un-related information is covered by training data, the loss will increase.

Diversity

We first review some definitions in Definition 3.3.2. The averaged representation difference for two model ϕ, ϕ̃ on a
distribution ζ over tasks is

d̄ζ(ϕ, ϕ̃) := E
T ∼ζ

[
Lsup(T , ϕ)− Lsup(T , ϕ̃)

]
= Lsup(ϕ)− Lsup(ϕ̃). (8.74)

The worst-case representation difference between representations ϕ, ϕ̃ on the family of classes C0 is

dC0
(ϕ, ϕ̃) := sup

T0⊆C0

∣∣∣Lsup(T0, ϕ)− Lsup(T0, ϕ̃)
∣∣∣ . (8.75)

We say the model class Φ has ν-diversity for ζ and C0 if for any ϕ ∈ Φ and ϕ∗
ζ ,

dC0
(ϕ, ϕ∗

ζ) ≤ d̄ζ(ϕ, ϕ
∗
ζ)/ν. (8.76)

To find the minimum value of ν in Definition 3.3.2, we need further information about ζ . For simplicity, we have a fixed
distance assumption, e.g., uniformly sampling from {(+1,+1,−1), (+1,−1,+1), (−1,+1,+1)}. Then, we consider
two different cases below. We consider that all T0 ⊆ C0 such containing z, z′ that differ in only 1 entry.

Assumption 8.4.5 (Fixed Distance). We assume for any multitask finetuning tasks distribution ζ, for any two latent
classes (z, z′) ∼ ζ, we have z, z′ differ in nk entries.

Case LC ̸= J0. In this case, J0 \ LC ̸= ∅, we have the features learned in multitask finetuning that do not cover all
features used in the target task. Then, we have the following lemma, which means if LC ̸= J0 we can have infinitesimal
ν to satisfy the diversity definition.

Lemma 8.4.6. Assume Assumption 8.4.1, Assumption 8.4.2 and Assumption 8.4.5. When LC ̸= J0, we have ν → 0.

Proof of Theorem 8.4.6. As features in C0 not covered by C, we can always find a T0 such containing z, z′ that only
differ in entries in J0 \ LC , we say as entry ĩ.

By Theorem 8.4.3, we have ϕ∗
ζ = UΛ∗Q−1, where U is any orthonormal matrix, Λ∗ = diag(λ∗). For any i ∈ JC ,

λ∗
i = R√

kC
and λ∗

i = 0 otherwise. We have Lsup(T0, ϕ∗
ζ) = 0 and by Eq. 8.70,

Lsup(ϕ
∗
ζ) = −B E

Tz,z′∼ζ

√∑
i∈JC

λ∗2
i 1[zi ̸= z′i]

 (8.77)

= −BR

√
nk

kC
. (8.78)
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On the other hand, for any ϕ ∈ Φ, we have Lsup(T0, ϕ) = −B|λĩ|. Thus, we have

ν = min
ϕ∈Φ

Lsup(ϕ)− Lsup(ϕ
∗
ζ)∣∣∣Lsup(T0, ϕ)− Lsup(T0, ϕ∗
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ĩ
)nk

kC
+R

√
nk

kC
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, (8.79)

where the first inequality is by constructing a specific ϕ. Note that Eq. 8.79→ 0 when |λĩ| → 0. ϕ is constructed as:

for any i ∈ JC , λi =

√
R2−λ2

ĩ

kC
and |λĩ| → 0. Thus, we finish the proof.

Case LC = J0. In this case J0 \ LC = ∅, we have all features in C0 covered by C.
Lemma 8.4.7. Assume Assumption 8.4.1, Assumption 8.4.2 and Assumption 8.4.5. When all T0 ⊆ C0 such
containing z, z′ that differ in only 1 entry and LC = J0, we have ν is lower bounded by some constant
c̃ =
√
nk

(
1−

√
1

kC(kC−1)

(√
nk(nk − 1) + kC − nk

))
.

Proof of Theorem 8.4.7. We say the differ entry in T0 as entry ĩ. By Theorem 8.4.3, we have ϕ∗
ζ = UΛ∗Q−1, where U

is any orthonormal matrix, Λ∗ = diag(λ∗). For any i ∈ JC , λ∗
i = R√

kC
and λ∗

i = 0 otherwise. By Eq. 8.70, we have
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and Lsup(ϕ

∗
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√
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.

On the other hand, for any ϕ ∈ Φ, we have Lsup(T0, ϕ) = −B|λĩ|. Thus, by Assumption 8.4.1, we have
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where the last equality take λĩ = 0.

8.4.3 Proof of Main Results

Proof of Theorem 3.3.6. Note that R = B = n0 = k0 = 1, nk = 2.

We see that ζ satisfies Assumption 8.4.1, Assumption 8.4.2 and Assumption 8.4.5. We finish the proof by Theorem 8.4.4,
Theorem 8.4.6 and Theorem 8.4.7 with some simple calculations.

Thus, we can link our diversity and consistency parameters to the number of features in z encoded by training tasks or
target tasks. Based on this intuition, we propose a selection algorithm, where selection is based on x, we want to select
data that encodes more relevant features of z, this can be achieved by comparing x from target data and training data
either using cosine similarity or KDE.

8.5 Vision Experimental Results

We first provide a summary of dataset and protocal we use, we provide details in following sections.

Datasets and Models. We use four widely used few-shot learning benchmarks: miniImageNet [Vinyals et al.,
2016], tieredImageNet [Ren et al., 2018], DomainNet [Peng et al., 2019] and Meta-dataset [Triantafillou et al., 2020],
following the protocol in Chen et al. [2021b]; Tian et al. [2020b]. We use exemplary foundation models with different
pretraining schemes (MoCo-v3 [Chen et al., 2021a], DINO-v2 [Oquab et al., 2023], and supervised learning with
ImageNet [Russakovsky et al., 2015]) and architectures (ResNet [He et al., 2016] and ViT [Dosovitskiy et al., 2021]).

Experiment Protocol. We consider few-shot tasks consisting of N classes with K support samples and Q query
samples per class (known as N -way K-shot). The goal is to classify the query samples into the N classes based on the
support samples. Tasks used for finetuning are constructed by samples from the training split. Each task is formed
randomly by sampling 15 classes, with every class drawing 1 or 5 support samples and 10 query samples. Target tasks
are similarly constructed, yet from the test set. We follow [Chen et al., 2021b] for multitask finetuning and target task
adaptation. During multitask finetuning, we update all parameters in the model using a nearest centroid classifier, in
which all samples are encoded, class centroids are computed, and cosine similarity between a query sample and those
centroids are treated as the class logits. For adaptation to a target task, we only retain the model encoder and consider
a similar nearest centroid classifier. This experiment protocol applies to all three major experiments (Sections 3.4.1
to 3.4.3).

8.5.1 Datasets

The miniImageNet dataset is a common benchmark for few-shot learning. It contains 100 classes sampled from
ImageNet, then is randomly split into 64, 16, and 20 classes as training, validation, and testing set respectively.

The tieredImageNet dataset is another widely used benchmark for few-shot learning. It contains 608 classes from 34
super-categories sampled from ImageNet. These categories are then subdivided into 20 training categories with 351
classes, 6 validation categories with 97 classes, and 8 testing categories with 160 classes

DomainNet is the largest domain adaptation benchmark with about 0.6 million images. It consists of around 0.6 million
images of 345 categories from 6 domains: clipart (clp), infograph (inf), quickdraw (qdr), real (rel) and sketch (skt). We
split it into 185, 65, 100 classes as training, validation, and testing set respectively. We conduct experiments on Sketch
(skt) subsets.

Meta-Dataset encompasses ten publicly available image datasets covering a wide array of domains: ImageNet-1k,
Omniglot, FGVC-Aircraft, CUB-200-2011, Describable Textures, QuickDraw, FGVCx Fungi, VGG Flower, Traffic
Signs, and MSCOCO. Each of these datasets is split into training, validation, and testing subsets. For additional
information on the Meta-Dataset can be found in Appendix 3 of Triantafillou et al. [2020].

8.5.2 Experiment Protocols

Our evaluation and the finetuning process take the form of few-shot tasks, where a target task consists of N classes with
K support samples and Q query samples in each class. The objective is to classify the query samples into the N classes
based on the support samples. To accomplish this, we take the support samples in each class and feed them through an
image encoder to obtain representations for each sample. We then calculate the average of these representations within
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each class to obtain the centroid of each class. For a given query sample x, we compute the probability that x belongs
to class y based on the cosine similarity between the representation of x and the centroid of class y.

In our testing stage, we constructed 1500 target tasks, each consisting of 15 classes randomly sampled from the test split
of the dataset. Within each class, we randomly selected 1 or 5 of the available images as shot images and 15 images as
query images. These tasks are commonly referred to as 1-shot or 5-shot tasks. We evaluated the performance of our
model on these tasks and reported the average accuracy along with a 95% confidence interval.

During multitask finetuning, the image encoder is directly optimized on few-shot classification tasks. To achieve
this, we construct multitasks in the same format as the target tasks and optimize from the same evaluation protocol.
Specifically, we create a total of 200 finetuning tasks, each task consists of 15 classes sampled from the train split of
data, where each class contains 1 support image and 9 query images, resulting in 150 images per task. The classes in a
finetuning task are sampled from the train split of the data.

To ensure a fair comparison with the finetuning baseline, we used the same training and testing data, as well as batch
size, and applied standard finetuning. During standard finetuning, we added a linear layer after the encoder and trained
the model. We also utilized the linear probing then finetuning (LP-FT) technique proposed by Kumar et al. [2022],
which has been shown to outperform finetuning alone on both in-distribution and out-of-distribution data. In the testing
stage, we removed the linear layer and applied the same few-shot testing pipeline to the finetuned encoders.

For task selection, we employ the CLIP ViT-B image encoder to obtain image embeddings. We assess consistency by
measuring the cosine similarity of the mean embeddings and we evaluate diversity through a coverage score derived
from the ellipsoid formula outlined in Section 3.3.2.

For optimization, we use the SGD optimizer with momentum 0.9, the learning rate is 1e-5 for CLIP and moco v3
pretrained models, and is 2e-6 for DINO v2 pretrained models. The models were finetuned over varying numbers of
epochs in each scenario until they reached convergence.

8.5.3 Existence of Task Diversity

Task diversity is crucial for the foundation model to perform well on novel classes in target tasks.

In this section, we prove for task satisfying consistency, greater diversity in the related data can help reduce the error on
the target task. Specifically, for the target task, where the target tasks data originates from the test split of a specific
dataset, we utilized the train split of the same dataset as the finetuning tasks data. Then finetuning tasks satisfied
consistency. In experiments, we varied the number of classes accessible to the model during the finetuning stage, while
keeping the total sample number the same. This serves as a measure of the diversity of training tasks.

miniImageNet and Omniglot

We show the results of CLIP encoder on miniImageNet and Omniglot. We vary the number of classes model access to
in finetuning stage. The number of classes varies from all classes, i.e., 64 classes, to 8 classes. Each task contains 5
classes. For finetuning tasks, each class contains 1 shot image and 10 query images. For target tasks, each class contains
the 1-shot image and 15 query images.

# limited classes 64 32 16 8 0
Accuracy 90.02 ± 0.15 88.54 ± 1.11 87.94 ± 0.22 87.07 ± 0.20 83.03 ± 0.24

Table 8.1: Class diversity on ViT-B32 backbone on miniImageNet.

Table 8.1 shows the accuracy of ViT-B32 across different numbers of classes during the finetuning stage. The “Class
0” represents direct evaluation without any finetuning. We observe that finetuning the model leads to an average
accuracy improvement of 4%. Furthermore, as the diversity of classes increases, we observe a corresponding increase
in performance. This indicates that incorporating a wider range of classes during the finetuning process enhances the
model’s overall accuracy.

For task diversity, we also use dataset Omniglot [Lake et al., 2015]. The Omniglot dataset is designed to develop more
human-like learning algorithms. It contains 1623 different handwritten characters from 50 different alphabets. The
1623 classes are divided into 964, 301, and 358 classes as training, validation, and testing sets respectively. We sample
multitask in finetuning stage from training data and the target task from testing data.
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# limited classes 964 482 241 50 10 0
Accuracy 95.35 ± 0.14 95.08 ± 0.14 94.29 ± 0.15 88.48 ± 0.20 80.26 ± 0.24 74.69 ± 0.26

Table 8.2: Class diversity on ViT-B32 backbone on Omniglot.

Table 8.2 shows the accuracy of ViT-B32 on different numbers of classes in finetuning stage, where class 0 indicates
direct evaluation without finetuning. Finetuning improves the average accuracy by 5.5%. As class diversity increases,
performance increases.

tieredImageNet

We then show results on tieredImageNet across learning settings for the ViT-B backbone. We follow the same setting
where we restrain each task that contains 15 classes.

Pretrained 351 175 43 10
DINOv2 84.74 82.75 82.60 82.16
CLIP 68.57 67.70 67.06 63.52
Supervised 89.97 89.69 89.19 88.92

Table 8.3: The performance of the ViT-B backbone using different pretraining methods on tieredImagenet, varying the number of
classes accessible to the model during the finetuning stage. Each column represents the number of classes within the training data.

We found that using more classes from related data sources during finetuning improves accuracy. This result indicates
that upon maintaining consistency, a trend is observed where increased diversity leads to an enhancement in performance.

8.5.4 Ablation Study

In Section 3.4 and the result in Table 3.2, we utilize the train split from the same dataset to construct the finetuning data.
It is expected that the finetuning data possess a diversity and consistency property, encompassing characteristics that
align with the test data while also focusing on its specific aspects.

In the following ablation study, we explore the relationship between the diversity and consistency of data in finetuning
tasks, sample complexity, and finetuning methods. We seek to answer the following questions: Does multitask finetuning
benefit only from certain aspects? How do these elements interact with each other?

Violate both consistency and diversity: Altering Finetuning Task Data with Invariant Sample Complexity

In this portion, we examine the performance when the model is finetuned using data completely unrelated to the target
task data. With the same finetuning sample complexity, the performance cannot be compared to the accuracy we have
currently attained.

In this section, we present the performance of MoCo v3 with a ViT-B backbone on the DomainNet dataset. We finetuned
the model using either ImageNet data or DomainNet train-split data and evaluated its performance on the test-split
of DomainNet. We observed that finetuning the model with data selected from the DomainNet train-split resulted in
improved performance on the target task. This finding aligns with our expectations and highlights the significance of
proper finetuning data selection.

When considering the results presented in Table 8.4, we also noticed that for MoCo v3 with a ResNet50 backbone and
DINO v2 with a ViT-S backbone, multitask finetuning on ImageNet led to a decrease in model performance compared
to direct adaptation. This suggests that inappropriate data selection can have a detrimental effect on the final model
performance. This conclusion is also supported by the findings of Kumar et al. [2022].

Violating consistency while retaining diversity: The Trade-Off between Task Consistency and Sample
Complexity

Finetuning tasks with superior data are expected to excel under identical complexity, a natural question can be proposed:
Does additional data enhance performance? Our results in this section negate this question. Testing the model on the
DomainNet test-split, we employ two settings. In the first setting, we finetune the model on the DomainNet train-split.
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pretrained backbone FT data Accuracy

MoCo v3 ViT-B ImageNet 24.88 (0.25)
DomainNet 32.88 (0.29)

ResNet50 ImageNet 27.22 (0.27)
DomainNet 33.53 (0.30)

DINO v2 ViT-S ImageNet 51.69 (0.39)
DomainNet 61.57 (0.40)

ViT-B ImageNet 62.32 (0.40)
DomainNet 68.22 (0.40)

Supervised ViT-B ImageNet 31.16 (0.31)
DomainNet 48.02 (0.38)

ResNet50 ImageNet 29.56 (0.28)
DomainNet 39.09 (0.34)

Table 8.4: Finetuning data selection on model performance. FT data: dataset we select for multitask finetuning. Report the accuracy
on the test-split of DomainNet.

In the second, the model is finetuned with a combination of the same data from DomainNet as in the first setting, along
with additional data from ImageNet.

Within our theoretical framework, mixing data satisfies diversity but fails consistency. The finetuning data, although
containing related information, also encompasses excessive unrelated data. This influx of unrelated data results in a
larger consistency parameter κ in our theoretical framework, adversely impacting model performance on the target task.
We offer empirical evidence to affirm our theoretical conclusion.

Pretrained DomainNet DomainNet + ImageNet
DINOv2 68.22 66.93
CLIP 64.97 63.48
Supervised 48.02 43.76

Table 8.5: Results evaluating on DomainNet test-split using ViT-B backbone. First column shows performance where model
finetune on data from DomainNet train-split alone, second column shows the performance of the model finetuned using a blend of
the same data from DomainNet, combined with additional data from ImageNet.

Table 8.5 shows mixed data of domainNet and ImageNet will doesn’t provide the same advantages as using only
DomainNet data. In this case, an increasing in data does not necessarily mean better performance.

Diversity and Consistency of Task Data and Finetuning Methods

To provide a more comprehensive understanding of the impact of task data and finetuning methods on model perfor-
mance, we conduct additional experiments, utilizing varying finetuning methods and data. The model is tested on the
DomainNet test split. We employ either multitask finetuning or standard finetuning, where a linear layer is added after
the pretrained model. This linear layer maps the representations learned by encoders to the logits. The data of finetuning
tasks derive from either the DomainNet train-split or ImageNet.

In Table 8.6, we detail how data quality and finetuning methods of tasks impact the ultimate performance. Standard
finetuning (SFT) with unrelated data diminishes performance compared to direct adaptation (col-1 vs col-2). On
the other hand, multitask finetuning using unrelated data (ImageNet), or SFT with related data (DomainNet), both
outperform direct adaptation. However, multitask finetuning with unrelated data proves more beneficial than the latter
(col-3 vs col-4). The peak performance is attained through multitask finetuning on related data (col-5).
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1 2 3 4 5
Pretrained Adaptation ImageNet (SFT) ImageNet (Ours) DomainNet (SFT) DomainNet (Ours)
DINOv2 61.65 59.80 62.32 61.84 68.22
CLIP 46.39 46.50 58.94 47.72 64.97
Supervised 28.70 28.52 31.16 30.93 48.02

Table 8.6: Results evaluating on DomainNet test-split using ViT-B backbone. Adaptation: Direction adaptation without finetuning;
SFT: Standard finetuning; Ours: Our multitask finetuning. Col-1 shows performance without any finetuning, Col-2,3,4,5 shows
performance with different finetuning methods and data.

Pretrained Selection INet Omglot Acraft CUB QDraw Fungi Flower Sign COCO
CLIP All 60.87 70.53 31.67 66.98 40.28 34.88 80.80 37.82 33.71

Selected 60.87 77.93 32.02 69.15 42.36 36.66 80.92 38.46 37.21
DINOv2 All 83.04 72.92 36.52 94.01 49.65 52.72 98.54 34.59 47.05

Selected 83.04 80.29 36.91 94.12 52.21 53.31 98.65 36.62 50.09
MoCo v3 All 59.62 60.85 18.72 40.49 40.96 32.65 59.60 33.94 33.42

Selected 59.62 63.08 19.03 40.74 41.16 32.89 59.64 35.25 33.51
Table 8.7: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone.

Ablation Study on Task Selection Algorithm

We show a simplified diagram for task selection in Figure 3.2.

We first provide some details of Table 3.1. We first create an array of finetuning tasks, and then apply our task selection
algorithm to these tasks. Specifically, we design 100 finetuning tasks by randomly selecting 15 classes, each providing 1
support sample and 10 query samples. The target tasks remain consistent with those discussed in Section 3.4. For a more
comprehensive analysis of our algorithm, we performed ablation studies on the task selection algorithm, concentrating
solely on either consistency or diversity, while violating the other. Violate Diversity: If the algorithm terminates early
without fulfilling the stopping criteria, the data utilized in finetuning tasks fails to encompass all the attributes present in
the target data. This leads to a breach of the diversity principle. Violate Consistency: Conversely, if the algorithm
persists beyond the stopping criteria, the finetuning tasks become overly inclusive, incorporating an excessive amount
of unrelated data, thus breaching the consistency.

This section details an ablation study on task selection for the dataset, we implement our task selection process on a
meta-dataset, treating each dataset as a distinct task and choosing datasets to serve as data sources for the finetuning
tasks. We show the result in Table 8.7.

Table 8.7 indicates that maintaining both consistency and diversity in the task selection algorithm is essential for optimal
performance. This is evident from the comparison between the Random selection and the our approach, where the latter
often shows improved performance across multiple datasets. ImageNet as the target task is an exception where the two
approaches give the best results. Due to its extensive diversity, all samples from all other datasets are beneficial for
finetuning. Consequently, the task selection algorithm tends to select all the candidate tasks.

8.5.5 Task Selection Algorithm on DomainNet

We verify our task selection algorithm by applying it on DomainNet. Here, the mini-ImageNet test-split is regarded as
the target task source, and diverse domains (such as clipart (clp), infograph (inf), quickdraw (qdr), real (rel), and sketch
(skt)) are considered as sources for finetuning tasks. We view different domain datasets as distinct finetuning tasks.
With 6 domains in focus, our objective is to select a subset that optimizes model performance. We systematically apply
Algorithm 1. Initially, we calculate the cosine similarity of mean embeddings between each domain and target tasks,
ordering them from most to least similar: real, painting, sketch, clipart, infograph, and quickdraw. Sequentially adding
datasets in this order, the process continues until the diversity score (1 over Mahalanobis distance) stops exhibiting
significant increase.

As we can see in Figure 8.1, the diversity does not increase when we just select real and painting as our finetuning task
data. For a comprehensive analysis, each combination is finetuned and the model performance accuracy on the target
task is displayed.
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Figure 8.1: Dataset selection based on consistency and diversity on domainNet. Figure 8.1a shows the consistency. Figure 8.1b
shows the diversity.
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Figure 8.2: Finetuning with different selection of domain datasets, where rp: real and painting; rps: real and painting and sketch
and so on.

As we can see in Figure 8.2,the accuracy aligns with the conclusions drawn based on consistency and diversity.
Remarkably, only real and painting suffice for the model to excel on the target task.

8.5.6 More Results with CLIP Encoder

In this section, we show additional results on CLIP [Radford et al., 2021] model.

We can observe from Table 8.8 standard finetuning improves performance compared to direct adaptation. However, our
proposed multitask finetuning approach consistently achieves even better results than the standard baseline.

Task (M ) vs Sample (m). We vary the task size and sample size per task during finetuning. We verify the trend of
different numbers of tasks and numbers of images per task. Each task contains 5 classes. For finetuning tasks, m = 50
indicates each class contains the 1-shot image and 9-query images. m = 100 indicates each class contains 2-shot and
18-query images. m = 200 indicates each class contains 4-shot and 36-query images. M = m = 0 indicates direct
evaluation without finetuning. For target tasks, each class contains the 1-shot image and 15 query images.

Table 8.9 shows the results on the pretrained CLIP model using the ViT backbone. For direct adaptation without
finetuning, the model achieves 83.03% accuracy. Multitask finetuning improves the average accuracy at least by 6%.
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miniImageNet tieredImageNet DomainNet
backbone method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
CLIP-ViTB32 Direct Adaptation 68.41 (0.54) 87.43 (0.15) 59.55 (0.21) 79.51 (0.27) 46.48 (0.37) 72.01 (0.29)

Standard FT 69.39 (0.30) 88.39 (0.15) 61.20 (0.37) 80.65 (0.27) 47.72 (0.37) 72.82 (0.29)
Multitask FT (Ours) 78.62 (0.15) 93.22 (0.11) 68.57 (0.37) 84.79 (0.22) 64.97 (0.39) 80.49 (0.25)

CLIP-ResNet50 Direct Adaptation 61.31 (0.31) 82.03 (0.18) 51.76 (0.36) 71.40 (0.30) 40.55 (0.36) 64.90 (0.31)
Standard FT 63.15 (0.31) 83.45 (0.17) 55.77 (0.35) 75.28 (0.29) 43.77 (0.38) 67.30 (0.31)
Multitask FT (Ours) 67.03 (0.30) 85.09 (0.17) 57.56 (0.36) 75.80 (0.28) 52.67 (0.39) 72.19 (0.30)

Table 8.8: Comparison on 15-way classification. Average few-shot classification accuracies (%) with 95% confidence intervals
clip encoder.

Task (M)
Sample (m) 0 50 100 200

0 83.03 ± 0.24
200 89.07 ± 0.20 89.95± 0.19 90.09 ± 0.19
400 89.31 ± 0.19 90.11± 0.19 90.70 ± 0.18
800 89.71 ± 0.19 90.27± 0.19 90.80 ± 0.18

Table 8.9: Accuracy with a varying number of tasks and samples (ViT-B32 backbone).

For a fixed number of tasks or samples per task, increasing samples or tasks improves accuracy. These results suggest
that the total number of samples (M ×m) will determine the overall performance, supporting our main theorem.

Few-shot Effect. We perform experiments on the few-shot effects of finetuning tasks. We aim to evaluate whether
increasing the number of few-shot images in the finetuning task leads to significant improvements. Each finetuning
task consists of 5 classes, and we maintain a fixed number of 10 query images per class while gradually increasing the
number of shot images, as illustrated in Table 8.10. As for the target tasks, we ensure each class contains 1 shot image
and 15 query images for evaluation.

# shot images 20 10 5 1 0
Accuracy 91.03 ± 0.18 90.93 ± 0.18 90.54 ± 0.18 90.02 ± 0.15 83.03 ± 0.24

Table 8.10: Few-shot effect on ViT-B32 backbone on miniImageNet.

Table 8.10 displays the accuracy results of ViT-B32 when varying the number of few-shot images in the finetuning tasks.
We observe that increasing the number of few-shot images, thereby augmenting the sample size within each task, leads
to improved performance. This finding is quite surprising, considering that the finetuning tasks and target tasks have
different numbers of shot images. However, this aligns with our understanding of sample complexity, indicating that
having access to more training examples can enhance the model’s ability to generalize and perform better on unseen
data.

8.5.7 Sample Complexity on Performance for tieredImageNet

We provide a table and visualization of the trend of the number of tasks and the number of samples per task for the
MoCo v3 ViT model on tieredImageNet in Table 8.11 and Figure 8.3.

As demonstrated in the paper, we have observed that increasing the number of tasks generally leads to performance
improvements, while keeping the number of samples per task constant. Conversely, when the number of samples per
task is increased while maintaining the same number of tasks, performance also tends to improve. These findings
emphasize the positive relationship between the number of tasks and performance, as well as the influence of sample
size within each task.

8.5.8 Full results for Effectiveness of Multitask Finetuning

In this section, we provide another baseline in complement to the results in Section 3.4.3.
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Task (M)
Sample (m) 150 300 450 600

200 68.32 (0.35) 71.42 (0.35) 73.84 (0.35) 75.58 (0.35)
400 71.41 (0.35) 75.60 (0.35) 77.57 (0.34) 78.66 (0.34)
600 73.85 (0.35) 77.59 (0.34) 79.04 (0.33) 79.76 (0.33)
800 75.56 (0.35) 78.68 (0.34) 79.78 (0.33) 80.26 (0.33)

Table 8.11: Accuracy with a varying number of tasks and samples (ViT-B32 backbone).

Figure 8.3: Finetuning using tieredImageNet train-split, test on test-split.

We incorporated the Model-Agnostic Meta-Learning (MAML) algorithm, as outlined by Finn et al. [2017], as another
baseline for our few-shot tasks. MAML operates in a two-step process: it initially updates parameters based on
within-episode loss (the inner loop), then it evaluates and updates loss based on learned parameters (the outer loop). We
follow the pipeline in Triantafillou et al. [2020] to implement MAML for few-shot tasks. We show results in Table 8.12.

Table 8.12 reveals that MAML exhibits variable performance across different settings. For instance, it outperforms both
Adaptation and Standard FT methods in scenarios like MoCo v3 ViT-B on miniImageNet, DomainNet, and ResNet
50 on supervised training for tieredImageNet. However, its performance is less impressive in other contexts, such as
DINOv2 ViT-B on miniImageNet and ViT-B on supervised training for miniImageNet. This variability in performance
is attributed to the constraints of our few-shot tasks, where the limited number of support samples restricts the model’s
capacity to adapt to new tasks. Despite these fluctuations, our multitask finetuning approach consistently surpasses the
mentioned baselines, often by a significant margin, across all evaluated scenarios.
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miniImageNet tieredImageNet DomainNet
pretrained backbone method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MoCo v3 ViT-B Adaptation 75.33 (0.30) 92.78 (0.10) 62.17 (0.36) 83.42 (0.23) 24.84 (0.25) 44.32 (0.29)
Standard FT 75.38 (0.30) 92.80 (0.10) 62.28 (0.36) 83.49 (0.23) 25.10 (0.25) 44.76 (0.27)
MAML 79.26 (0.28) 93.02 (0.08) 67.96 (0.32) 84.66 (0.19) 28.91 (0.39) 51.12 (0.28)
Ours 80.62 (0.26) 93.89 (0.09) 68.32 (0.35) 85.49 (0.22) 32.88 (0.29) 54.17 (0.30)

ResNet50 Adaptation 68.80 (0.30) 88.23 (0.13) 55.15 (0.34) 76.00 (0.26) 27.34 (0.27) 47.50 (0.28)
Standard FT 68.85 (0.30) 88.23 (0.13) 55.23 (0.34) 76.07 (0.26) 27.43 (0.27) 47.65 (0.28)
MAML 69.28 (0.26) 88.78 (0.12) 55.31 (0.32) 75.51 (0.19) 27.53 (0.39) 47.73 (0.28)
Ours 71.16 (0.29) 89.31 (0.12) 58.51 (0.35) 78.41 (0.25) 33.53 (0.30) 55.82 (0.29)

DINO v2 ViT-S Adaptation 85.90 (0.22) 95.58 (0.08) 74.54 (0.32) 89.20 (0.19) 52.28 (0.39) 72.98 (0.28)
Standard FT 86.75 (0.22) 95.76 (0.08) 74.84 (0.32) 89.30 (0.19) 54.48 (0.39) 74.50 (0.28)
MAML 86.67 (0.24) 95.54 (0.08) 74.63 (0.34) 89.60 (0.19) 52.72 (0.34) 73.35 (0.28)
Ours 88.70 (0.22) 96.08 (0.08) 77.78 (0.32) 90.23 (0.18) 61.57 (0.40) 77.97 (0.27)

ViT-B Adaptation 90.61 (0.19) 97.20 (0.06) 82.33 (0.30) 92.90 (0.16) 61.65 (0.41) 79.34 (0.25)
Standard FT 91.07 (0.19) 97.32 (0.06) 82.40 (0.30) 93.07 (0.16) 61.84 (0.39) 79.63 (0.25)
MAML 90.77 (0.18) 97.20 (0.08) 82.54 (0.32) 92.88 (0.19) 62.30 (0.39) 79.01 (0.28)
Ours 92.77 (0.18) 97.68 (0.06) 84.74 (0.30) 93.65 (0.16) 68.22 (0.40) 82.62 (0.24)

Supervised ViT-B Adaptation 94.06 (0.15) 97.88 (0.05) 83.82 (0.29) 93.65 (0.13) 28.70 (0.29) 49.70 (0.28)
pretraining Standard FT 95.28 (0.13) 98.33 (0.04) 86.44 (0.27) 94.91 (0.12) 30.93 (0.31) 52.14 (0.29)
on ImageNet MAML 95.35 (0.12) 98.50 (0.08) 86.79 (0.32) 94.72 (0.19) 30.53 (0.39) 52.21 (0.28)

Ours 96.91 (0.11) 98.76 (0.04) 89.97 (0.25) 95.84 (0.11) 48.02 (0.38) 67.25 (0.29)

ResNet50 Adaptation 81.74 (0.24) 94.08 (0.09) 65.98 (0.34) 84.14 (0.21) 27.32 (0.27) 46.67 (0.28)
Standard FT 84.10 (0.22) 94.81 (0.09) 74.48 (0.33) 88.35 (0.19) 34.10 (0.31) 55.08 (0.29)
MAML 82.07 (0.28) 94.12 (0.08) 75.69 (0.32) 89.30 (0.19) 35.10 (0.39) 56.51 (0.28)
Ours 87.61 (0.20) 95.92 (0.07) 77.74 (0.32) 89.77 (0.17) 39.09 (0.34) 60.60 (0.29)

Table 8.12: Results of few-shot image classification. We report average classification accuracy (%) with 95% confidence intervals
on test splits. Adaptation: Direction adaptation without finetuning; Standard FT: Standard finetuning; MAML: MAML algorithm in
Finn et al. [2017]; Ours: Our multitask finetuning; 1-/5-shot: number of labeled images per class in the target task.

8.6 NLP Experimental Results

We first provide a summary of the experimental setting and results in the below subsection. Then we provide details in
the following subsections.

8.6.1 Summary

To further validate our approach, we conducted prompt-based finetuning experiments on masked language models,
following the procedure outlined in Gao et al. [2021a].

Datasets and Models. We consider a collection of 14 NLP datasets, covering 8 single-sentence and 6 sentence-pair
English tasks. This collection includes tasks from the GLUE benchmark [Wang et al., 2018a], as well as 7 other
popular sentence classification tasks. The objective is to predict the label based on a single sentence or a sentence-pair.
Specifically, the goal is to predict sentiments for single sentences or to estimate the relationship between sentence pairs.
Each of the datasets is split into training and test set. See details in Section 8.6.2. We experiment with a pretrained
model RoBERTa [Liu et al., 2019].

Experiment Protocols. We consider prompt-based finetuning for language models [Gao et al., 2021a]. This approach
turns a prediction task into a masked language modeling problem, where the model generates a text response to a given
task-specific prompt as the label. Our experiment protocol follows Gao et al. [2021a]. The experiments are divided
into 14 parallel experiments, each corresponding to a dataset. For the few-shot experiment, we use test split data as
the target task data and sample 16 examples per class from the train split as finetuning data. The evaluation metric is
measured by prompt-based prediction accuracy.

During the testing stage, we conduct experiments in zero-shot and few-shot settings for a given dataset. In the zero-shot
setting, we directly evaluate the model’s prompt-based prediction accuracy. In the few-shot setting, we finetune the
model using support samples from the same dataset and assess its accuracy on the test split. For multitask finetuning,
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Prompt-based zero-shot 83.6 35.0 80.8 79.5 67.6 51.4 32.0 2.0
Multitask FT zero-shot 92.9 37.2 86.5 88.8 73.9 55.3 36.8 -0.065

Prompt-based FT† 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0) 84.7 (2.2) 91.2 (1.1) 84.8 (5.1) 9.3 (7.3)
Multitask Prompt-based FT 92.0 (1.2) 48.5 (1.2) 86.9 (2.2) 90.5 (1.3) 86.0 (1.6) 89.9 (2.9) 83.6 (4.4) 5.1 (3.8)
+ task selection 92.6 (0.5) 47.1 (2.3) 87.2 (1.6) 91.6 (0.9) 85.2 (1.0) 90.7 (1.6) 87.6 (3.5) 3.8 (3.2)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)

Prompt-based zero-shot 50.8 51.7 49.5 50.8 51.3 61.9 49.7
Multitask FT zero-shot 63.2 65.7 61.8 65.8 74.0 81.6 63.4

Prompt-based FT† 68.3 (2.3) 70.5 (1.9) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3)
Multitask Prompt-based FT 70.9 (1.5) 73.4 (1.4) 78.7 (2.0) 71.7 (2.2) 74.0 (2.5) 79.5 (4.8) 67.9 (1.6)
+ task selection 73.5 (1.6) 75.8 (1.5) 77.4 (1.6) 72.0 (1.6) 70.0 (1.6) 76.0 (6.8) 69.8 (1.7)

Table 8.13: Results of few-shot learning with NLP benchmarks. All results are obtained using RoBERTa-large. We report mean
(and standard deviation) of metrics over 5 different splits. †: Result in Gao et al. [2021a]; FT: finetuning; task selection: select
multitask data from customized datasets.

we select support samples from other datasets and construct tasks for prompt-based finetuning. We then evaluate the
performance of the finetuned model on the target task. More details can be found in Section 8.6.3.

Task Selection. We select datasets by using task selection algorithm of feature vectors, which are obtained by
computing the representations of each dataset and analyzing their relationship. We first obtain text features for each
data point in the dataset. We select few-shot samples for generating text features. For each example, we replace the
masked word with the true label in its manual template, then we forward them through the BERT backbone. Then, we
compute the first principal component to obtain a feature vector for each dataset. Dataset selection provides certain
improvements on some datasets, as elaborated below. Further details can be found in Section 8.6.4.

Results. Our results are presented in Table 8.13. Again, our method outperforms direct adaptation on target tasks
across most datasets. For zero-shot prediction, our method provides improvements on all datasets except CoLA. Our
multitask finetuning approach results in performance improvements on 12 out of 15 target tasks for few-shot prediction,
with the exceptions being SST-2, Subj, and CoLA. CoLA is also reported by Gao et al. [2021a] as an exception that
contains non-grammatical sentences that are outside of the distribution of the pretrained language model. SST-2 already
achieves high accuracy in zero-shot prediction, and our model performs best in such setting. Subj is unique in that its
task is to predict whether a given sentence is subjective or objective, therefore multitasking with few-shot samples from
other datasets may not provide significant improvement for this task.

8.6.2 Datasets and Models

The text dataset consisted of 8 single-sentence and 6 sentence-pair English tasks, including tasks from the GLUE
benchmark [Wang et al., 2018a], as well as 7 other popular sentence classification tasks (SNLI [Bowman et al., 2015],
SST-5 [Socher et al., 2013], MR [Pang and Lee, 2005], CR [Hu and Liu, 2004], MPQA [Wiebe et al., 2005], Subj [Pang
and Lee, 2004], TREC [Voorhees and Tice, 2000]). The objective was to predict the label based on a single sentence or
a sentence-pair. Specifically, for single sentences, we aimed to predict their semantics as either positive or negative,
while for sentence-pairs, we aimed to predict the relationship between them. We experiment with the pretrained model
RoBERTa. We have 14 datasets in total. We split each dataset into train and test split, see details below. We experiment
with the pretrained model RoBERTa.

We follow Gao et al. [2021a] in their train test split. We use the original development sets of SNLI and datasets from
GLUE for testing. For datasets such as MR, CR, MPQA, and Subj that require a cross-validation evaluation, we
randomly select 2,000 examples for testing and exclude them from training. For SST5 and TREC, we utilize their
official test sets.

To construct multitask examples from support samples, we gather support samples from all datasets except the testing
dataset. For each task, we randomly select ten support samples and prompt-based finetuning the model.
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Task Template Label words
SST-2 <S1> It was [MASK] . positive: great, negative: terrible
SST-5 <S1> It was [MASK] . v.positive: great, positive: good, neutral: okay, negative: bad, v.negative: terrible
MR <S1> It was [MASK] . positive: great, negative: terrible
CR <S1> It was [MASK] . positive: great, negative: terrible
Subj <S1> This is [MASK] . subjective: subjective, objective: objective
TREC [MASK] : <S1> abbreviation: Expression, entity: Entity, description: Description

human: Human, location: Location, numeric: Number
COLA <S1> This is [MASK] . grammatical: correct, not_grammatical: incorrect

MNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
SNLI <S1> ? [MASK] , <S2> entailment: Yes, netural: Maybe, contradiction: No
QNLI <S1> ? [MASK] , <S2> entailment: Yes, not_entailment: No
RTE <S1> ? [MASK] , <S2> entailment: Yes, not_entailment: No
MRPC <S1> [MASK] , <S2> equivalent: Yes, not_equivalent: No
QQP <S1> [MASK] , <S2> equivalent: Yes, not_equivalent: No

Table 8.14: Manual templates and label words that we used in our experiments, following Gao et al. [2021a].

8.6.3 Experiment Protocols

Gao et al. [2021a] proposed a prompt-based finetuning pipeline for moderately sized language models such as BERT,
RoBERTa. Prompt-based prediction converts the downstream prediction task as a (masked) language modeling problem,
where the model directly generates a textual response also known as a label word, to a given prompt defined by a
task-specific template. As an illustration, consider the SST-2 dataset, which comprises sentences expressing positive
or negative sentiment. The binary classification task can be transformed into a masked prediction problem using the
template <S>, it was <MASK>., where <S> represents the input sentence and <MASK> is the label word (e.g., "great"
or "terrible") that the model is supposed to predict, see full templates in Table 8.14. Prompt-based finetuning updates
the model with prompt-based prediction loss for a given example, such as a sentence or sentence-pair.

To conduct the few-shot experiment, we use all data from the test split as the target task data for each dataset, and
sample 16 examples per class from the train split as the support samples. The experiments are divided into 14 parallel
experiments, with each corresponding to one dataset. The evaluation accuracy is measured as the prompt-based
prediction accuracy. We subsampled 5 different sets of few-shot examples to run replicates experiments and report
average performance.

During the testing stage, for a given dataset (e.g. QNLI), we consider the entire test split as the target task and divide the
experiment into zero-shot and few-shot settings. In the zero-shot setting, we directly evaluate the model by measuring
the accuracy of prompt-based predictions. In the few-shot setting, we first prompt-based finetune the model with support
samples from the same dataset (QNLI) and then evaluate the accuracy on the test split. This experimental protocol
follows the same pipeline as described in Gao et al. [2021a].

To perform multitask finetuning for a target task on a particular dataset (e.g. QNLI), we select support samples from
other datasets (e.g. SST-2, Subj, QQP, etc.) as finetuning examples. We construct tasks using these examples and apply
the same prompt-based finetuning protocol to multitask finetune the model on these tasks. Finally, we evaluate the
performance of the finetuned model on the target task.

8.6.4 Task Selection

The importance of the relationship between the data used in the training tasks and the target task cannot be overstated in
multitask finetuning. Our theory measures this relationship through diversity and consistency statements, which require
that our finetuning data are diverse enough to capture the characteristics of the test data, while still focusing on the
specific regions where the test data aligns. We visualize this diversity and relationship through the feature maps of the
datasets.

To visualize the relationship between feature vectors of different datasets, we first obtain text features for each data
point in the dataset. We select few-shot samples for generating text features. For each example, we replace the masked
word with the true label in its manual template, then we forward them through the BERT backbone. The reason for using
BERT over RoBERTa is that the latter only has masked token prediction in pretraining, the [CLS] in pretrained RoBERTa
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Figure 8.4: Linear similarity among features vectors among 14 language datasets.

cola: mr, cr,sst-2,sst-5,subj
sst-2: cola,mr, cr,sst-5,subj,

mrpc: qnli, rte
qqp: snli, mnli
mnli: snli, qqp
snli: qqp, mnli
qnli: mrpc, rte
rte: mrpc, qnli

mr: cola, cr,sst-2,sst-5,subj
sst-5: cola,mr, cr,sst-2,subj
subj: cola,mr, cr,sst-2,sst-5

trec: mpqa
cr: cola,mr,sst-2,sst-5,subj

mpqa: trec

Table 8.15: Dataset selection.

model might not contain as much sentence information as BERT. Then, we compute the first principal component to
obtain a feature vector for each dataset. We illustrate the relationship between these feature vectors in Figure 8.4.

We further perform training data selection based on the task selection algorithm among the feature vectors, the selected
dataset is shown in table Table 8.15.

By performing task selection, we observed further improvements in multitask prompt-based finetuning on MR, CR,
TREC, MNLI, QNLI, and QQP datasets. However, it’s worth noting that the CoLA dataset is an exception, as it involves
predicting the grammaticality of sentences, and its inputs may include non-grammatical sentences that are outside the
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Prompt-based zero-shot 83.6 35.0 80.8 79.5 67.6 51.4 32.0 2.0
Multitask FT zero-shot 92.9 37.2 86.5 88.8 73.9 55.3 36.8 -0.065
+ task selection 92.5 34.2 87.1 88.7 71.8 72.0 36.8 0.001

Prompt-based FT† 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0) 84.7 (2.2) 91.2 (1.1) 84.8 (5.1) 9.3 (7.3)
Multitask Prompt-based FT 92.0 (1.2) 48.5 (1.2) 86.9 (2.2) 90.5 (1.3) 86.0 (1.6) 89.9 (2.9) 83.6 (4.4) 5.1 (3.8)
+ task selection 92.6 (0.5) 47.1 (2.3) 87.2 (1.6) 91.6 (0.9) 85.2 (1.0) 90.7 (1.6) 87.6 (3.5) 3.8 (3.2)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)

Prompt-based zero-shot 50.8 51.7 49.5 50.8 51.3 61.9 49.7
Multitask FT zero-shot 63.2 65.7 61.8 65.8 74.0 81.6 63.4
+ task selection 62.4 64.5 65.5 61.6 64.3 75.4 57.6

Prompt-based FT† 68.3 (2.3) 70.5 (1.9) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6) 74.5 (5.3) 65.5 (5.3)
Multitask Prompt-based FT 70.9 (1.5) 73.4 (1.4) 78.7 (2.0) 71.7 (2.2) 74.0 (2.5) 79.5 (4.8) 67.9 (1.6)
+ task selection 73.5 (1.6) 75.8 (1.5) 77.4 (1.6) 72.0 (1.6) 70.0 (1.6) 76.0 (6.8) 69.8 (1.7)

Table 8.16: Results of few-shot learning with NLP benchmarks. All results are obtained using RoBERTa-large. We report the
mean (and standard deviation) of metrics over 5 different splits. †: Result in Gao et al. [2021a] in our paper; FT: finetuning; task
selection: select multitask data from customized datasets.

distribution of masked language models, as noted in Gao et al. [2021a]. Overall, our approach shows promising results
for multitask learning in language tasks.

Full Results with Task Selection

To complement task selection in Table 8.13, we provide full results here and explain each method thoroughly.

We first elaborate on what each method did in each stage. During the testing stage, we conducted experiments in
zero-shot and few-shot settings for a given dataset following Gao et al. [2021a], who applied prompt-based methods
on moderately sized language models such as RoBERTa. Prompt-based finetuning method updates the model with
prompt-based prediction loss for a given example. The given example can either be from a testing dataset or other
datasets.

Table 8.16 shows our multitask finetuning and task selection provide helps on target tasks, as detailed in Section 8.6.1.
We will elaborate on what each method did in the “Multitask fintuning phase” and “Downstream phase”.

In the “Multitask fintuning phase”: For prompt-based zero-shot (col-1) and prompt-based FT (col-4) we do not finetune
any model. For Multitask Prompt-based finetuning (col-2,3,5,6), we conduct prompt-based finetuning methods using
finetuning(auxiliary) tasks. The data of tasks are from datasets other than testing datasets. For instance, consider a
model designated to adapt to a dataset (say SST-2), we choose data from other datasets (mr, cr, etc. ) and combine these
data together and form multiple auxiliary tasks, these tasks updated the model using prompt-based finetuning methods.
In the “downstream phase” where we adapt the model: In the zero-shot setting (col-1,2,3), we directly evaluate the
model’s prompt-based prediction accuracy. In the few-shot setting (col-4,5,6), we finetune the model using shot samples
from the same dataset (sst-2) and assess its accuracy on the test split.

Additional Results on simCSE

We present our results using the same approach as described in our paper. However, we used a different pretrained loss,
namely simCSE, as proposed by Gao et al. [2021c]. However, the results are not promising, The reason is simCSE
is trained with a contrastive loss instead of masked language prediction, making it less suitable for prompt-based
finetuning.

8.7 Vision Language Tasks

Pretrained vision-language as another type of foundation model has achieved tremendous success across various
downstream tasks. These models, such as CLIP [Radford et al., 2021] and ALIGN [Jia et al., 2021], align images
and text in a shared space, enabling zero-shot classification in target tasks. Finetuning such models has resulted in
state-of-the-art accuracy in several benchmarks.
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SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)

Prompt-based zero-shot 50.9 19.3 50 50 50 50.4 27.2 0
Multitask FT zero-shot 51.3 13.8 50 50 50 50.6 18.8 0

Prompt-based FT† 51.8(2.6) 20.5 (6.1) 50.6 (0.8) 50.8 (1.1) 52.3 (1.9) 55.4 (3.7) 19.8 (7.3) 0.8 (0.9)
Multitask Prompt-based FT 50.6 (0.7) 22.1 (6.2) 50.5 (1.0) 51.5 (1.7) 53.4 (2.7) 51.0 (1.4) 26.4 (8.5) 0.9 (1.3)

+ task selection 51.7 (1.7) 19.7 (5.6) 50.6 (0.8) 51.6 (1.6) 52.3 (2.7) 54.7 (2.5) 23.2 (9.9) 0.5 (0.7)

MNLI MNLI-mm SNLI QNLI RTE MRPC QQP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)

Prompt-based zero-shot 35.4 35.2 33.8 50.5 47.3 1.4 1.5
Multitask FT zero-shot 35.4 35.2 33.6 49.5 47.3 53.8 53.8

Prompt-based FT† 32.9 (0.8) 33.0 (0.7) 33.7 (0.6) 50.6 (1.4) 48.7 (3.7) 79.2 (4.1) 53.5 (2.7)
Multitask Prompt-based FT 32.5 (0.6) 32.5 (0.7) 33.5 (0.4) 50.6 (2.4) 50.0 (2.0) 76.3 (6.5) 54.2 (0.8)

+ task selection 33.2 (1.2) 33.2 (1.1) 35.0 (0.8) 50.3 (0.4) 51.8 (2.0) 72.2 (10.8) 52.9 (3.0)

Table 8.17: Our main results using simCSE [Gao et al., 2021c]. We report mean (and standard deviation) performance over 5 splits
of few-shot examples. FT: fine-tuning; task selection: select multitask data from customized dataset.

Vision-language model enables the classification of images through prompting, where classification weights are
calculated by a text encoder. The text encoder inputs text prompts containing class information, and outputs features
aligned with features from the vision encoder in the same space.

However, standard finetuning can be affected by minor variations underperforming direct adaptation [Kumar et al.,
2022; Wortsman et al., 2022]. Additionally, standard finetuning can be computationally expensive, as it requires training
the model on a large amount of target task data.

We perform our multitask finetuning pipeline on the vision-language model and observe certain improvements. It’s
worth mentioning although the vision-language model is pretrained using contrastive learning, the model does not align
with our framework. Vision-language model computes contrastive loss between image and text encoder, whereas our
pretraining pipeline formulates the contrastive loss between the same representation function ϕ for positive and negative
sample pairs. Despite the discrepancy, we provide some results below.

8.7.1 Improving Zero-shot Performance

We investigate the performance of CLIP models in a zero-shot setting, following the established protocol for our vision
tasks. Each task includes 50 classes, with one query image per class. We employ text features combined with class
information as the centroid to categorize query images within the 50 classes. During adaptation, we classify among
randomly selected classes in the test split, which consists of 50 classes.

We experimented with our methods on tieredImageNet and DomainNet. The text template utilized in tieredIma-
geNet was adapted from the CLIP documentation. In adaptation, we classify among all classes in the test split
(160 classes in tieredImageNet and 100 classes in DomainNet). For text features on tieredImageNet, we use 8
templates adapted from CLIP a photo of a {}, itap of a {}, a bad photo of the {}, a origami {},
a photo of the large {}, a {} in a video game, art of the {}, a photo of the small {}. For
templates on DomainNet, we simply use a photo of a {}. In the DomainNet The text template used for this
experiment is "a photo of {}". We perform Locked-Text Tuning, where we fixed the text encoder and update the
vision encoder alone.

Backbone Method tieredImageNet DomainNet
ViT-B Adaptation 84.43 (0.25) 70.93 (0.32)

Ours 84.50 (0.25) 73.31 (0.30)
ResNet50 Adaptation 81.01 (0.28) 63.61 (0.34)

Ours 81.02 (0.27) 65.55 (0.34)

Table 8.18: Multitask finetune on zero-shot performance with CLIP model.
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Table 8.18 demonstrates that CLIP already exhibits a high level of zero-shot performance. This is due to the model
classifying images based on text information rather than relying on another image from the same class, which enables
the model to utilize more accurate information to classify among query images. We show the effectiveness of zero-shot
accuracy in tieredImageNet and DomainNet. It is worth highlighting that our multitask finetuning approach enhances
the model’s zero-shot performance, particularly on the more realistic DomainNet dataset. We have observed that our
multitask finetuning pipeline yields greater improvements for tasks on which the model has not been extensively trained.

8.7.2 Updating Text Encoder and Vision Encoder

We also investigated whether updating the text encoder will provide better performance. On the tieredImageNet dataset,
We finetune the text encoder and vision encoder simultaneously using the contrastive loss, following the protocol in
Goyal et al. [2023].

Method Zero-shot Multitask finetune
Accuracy 84.43 (0.25) 85.01 (0.76)

Table 8.19: Multitask finetune on zero-shot performance with ViT-B32 backbone on tieredImageNet.

In Table 8.19, we observed slightly better improvements compared to updating the vision encoder alone. We anticipate
similar performance trends across various datasets and backbone architectures. We plan to incorporate these findings
into our future work.

8.7.3 CoCoOp

We also multitask finetune the vision language model following the protocol outlined in Zhou et al. [2022a]. This
approach involved prepending an image-specific token before the prompt to enhance prediction accuracy. To generate
this token, we trained a small model on the input image. We evaluate the performance of our model on all classes in the
test split, which corresponds to a 160-way classification task. This allows us to comprehensively assess the model’s
ability to classify among a large number of categories.

Method Zero-shot Multitask finetune
ViT-B32 69.9 71.4

Table 8.20: Multitask finetune on zero-shot performance with ViT-B32 backbone on tieredImageNet.

Table 8.20 showed the result of the performance of the CoCoOp method. We observed an improvement of 1.5% in
accuracy on direct adaptation.

75



Chapter 9

Appendix of Chapter 4

In this appendix, we provide more empirical settings and results for logical tasks in Section 9.1 and linguistic translation
tasks in Section 9.2. We provide a theory for confined support and model scalability, along with a case study of a toy
model in Section 9.3. We provide full proof in Section 9.4.

9.1 Logical Tasks

9.1.1 Task Setup

We provide a comprehensive explanation of logical composite tasks below. Examples can be seen in Table 9.1.

• (A) + (B) Capitalization & Swap, as in Section 4.2.
• (A) + (C) Capitalization & Two Sum. Given words of numerical numbers, * represents the operation of

capitalizing, @ represents summing the two numbers.
• (G) + (H) Modular & Two Sum Plus. Given numerical numbers, @ represents the operation of taking

modular, # represents to sum the two numbers and then plus one.
• (A) + (F) Capitalization & Plus One. If numerical numbers are given, plus one; if words are given, capitalize

the word; if both are given, perform both operations.

Among these, (A) + (F) performs the two operations on separable parts of the test inputs (i.e., separable composite task).

Tasks Simple Task Simple Task Composite
(A) + (B) input: * apple

output: APPLE
input: ( farm frog )
output: frog farm

input: ( * bell * ford )
output: FORD BELL

(A) + (C) input: * ( five )
output: FIVE

input: twenty @ eleven
output: thirty-one

input: * ( thirty-seven @ sixteen )
output: FIFTY-THREE

(G) + (H) input: 15 @ 6
output: 3

input: 12 # 5
output: 18

input: 8 # 9 @ 7
Ouput: 4

(A) + (F) input: 435
output: 436

input: cow
output: COW

input: 684 cat
output: 685 CAT

Table 9.1: Examples of the four logical composite tasks. Note that in (G) + (H), the output of the composite task can be
either 4 or 11 depending on the order of operations, and we denote both as correct.

We design our logical tasks following the idea of math reasoning and logical rules. The details are shown in Table 9.1.
Our numerical numbers in Table 4.2 are uniformly randomly chosen from 1 to 1000. The words of numbers in task (C)
are uniformly randomly chosen from one to one hundred. The words representing objects in Table 4.2 are uniformly
randomly chosen from class names of ImageNet after dividing the phrase (if any) into words. We randomly chose 100
examples in composite testing data in our experiments and replicated the experiments in each setting three times. We
fixed the number of in-context examples as K = 10 as demonstrations.
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9.1.2 Experimental Setup

We use exact match accuracy to evaluate the performance between sequence outputs. The calculation of exact match
accuracy divided the number of matched words by the length of ground truth.

For Llama models, we use official Llama1 and Llama2 models from Meta [Touvron et al., 2023a], we use
open_llama_3b_v2 from open OpenLlama [Geng and Liu, 2023]. For GPT models, we use GPT2-large from OpenAI
[Radford et al., 2019], and we use GPT-neo models for GPT models in other scales from EleutherAI [Black et al., 2021].

We’ve experimented with prompt demonstrations. Instructional prompts do help ChatGPT and Claude3 (although we
haven’t quantified the accuracy in large-scale experiments), but they offer limited benefits for current open-source
models. On the other hand, we did not have prompt tuning or any other parameter updates during our evaluation.

In our experiments, we provided the model with instructions. Here are instructions of Figure 4.1, which were prepended
to ICL examples. We refer to our codebase for full instructions and results.

* is a function before words for swapping the position of 2 words, # is another function after words for
capitalizing letters of words.

9.1.3 Results

We show a visualization of some logical task accuracy along the increasing to model scale, complement to Table 4.4.

We also include results for the more recent model Llama3 [Meta, 2024] on the part of our logical tasks to demonstrate
the idea. We show results in Table 9.2.

Llama3
Tasks 8B 70B

(A) + (B) Capitalization 100 100
swap 100 100

Compose 52 72
Com. in-context 97 100

(A) + (F) Capitalization 100 100
PlusOne 100 100
Compose 88 100

Com. in-context 100 100

Table 9.2: Results evaluating composite tasks on Llama3. The accuracy is shown in %.

As shown in the Table 9.2, for the separable composite tasks which are relatively easy for model to solve (A) + (F),
the models show strong compositional ability: the composite accuracy is high, improves with increasing scale, and
eventually reaches similar performance as the gold standard composite in-context setting. For composite tasks with
sequential reasoning steps (A) + (B), the model has poor performance on a small scale but has increased performance on
an increased model scale. Providing composed examples as in-context demonstrations will help the model understand
and solve the composite tasks well.

9.2 Formal Language Translation Tasks

Our translation tasks mainly follow the compositional generalization tasks in COFE [An et al., 2023b]. The details can
be found in Section 4 in An et al. [2023a]. We directly take the source grammar Gs in COGS, which mimics the English
natural language grammar, and reconstruct the target grammar Gt in COGS to be chain-structured.

We follow the Primitive coverage principle proposed by An et al. [2023b] that primitives contained in each test sample
should be fully covered by in-context examples. Here, primitives refer to the basic, indivisible elements of expressions,
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Figure 9.1: The accuracy v.s. model scale on composite logical rule tasks. Dashed lines: simple tasks. Solid lines:
composite tasks. Rows: (A) + (C) Capitalization & Two Sum; (G) + (H) Modular & Two Sum Plus; (A) + (F)
Capitalization & Plus One. Columns: different models. Lines: performance in different evaluation settings, i.e., the
two simple tasks, the composite setting, and the composite in-context setting (examples for the last two are shown in
Table 4.1).

including subjects, objects, and verbs. Note that multiple sets of in-context examples can meet these criteria for each
test case. Across all experimental conditions, we maintain a consistent number of test instances at 800.

We use the word error rate (WER) as the metric. It measures the differences between 2 sentences. It measures the
minimum number of editing operations (deletion, insertion, and substitution) required to transform one sentence into
another and is common for speech recognition or machine translation evaluations. The computation of WER is divided
by the number of operations by the length of ground truth.

In formal language tasks, as mentioned in Section 4.3.2, we change the original target grammar of COGS to be
chain-structured. In Table 9.3, we list some examples with the original target grammar and the new chain-structured
grammar.

• First, to distinguish the input and output tokens, we capitalize all output tokens (e.g., from “rose” to “ROSE”).

• Second, we replace the variables (e.g., “x_1”) in the original grammar with their corresponding terminals (e.g.,
“ROSE”).
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Original Target Grammar Chain-Structured Target Grammar

rose ( x_1 ) AND help . theme ( x_3 , x_1 ) AND help .
agent ( x_3 , x_6 ) AND dog ( x_6 ) HELP ( DOG, ROSE, NONE )
* captain ( x_1 ) ; eat . agent ( x_2 , x_1 ) EAT ( CAPTION, NONE, NONE )
* dog ( x_4 ) ; hope . agent ( x_1 , Liam ) AND hope .
ccomp ( x_1 , x_5 ) AND prefer . agent ( x_5 , x_4 ) HOPE ( LIAM, NONE, NONE ) CCOMP PREFER ( DOG, NONE, NONE )

Table 9.3: Demonstration in An et al. [2023a] showing examples with the original grammar and the new chain-structured
grammar.

• Then, we group the terminals of AGENT (e.g., “DOG”), THEME (e.g., “ROSE”), and RECIPIENT with their
corresponding terminal of PREDICATE (e.g., “HELP”) and combine this group of terminals in a function
format, i.e., “PREDICATE ( AGENT, THEME, RECIPIENT )”. If the predicate is not equipped with an agent,
theme, or recipient in the original grammar, the corresponding new non-terminals (i.e., AGENT, THEME, and
RECIPIENT, respectively) in the function format above will be filled with the terminal NONE (e.g., “HELP (
DOG, ROSE, NONE )”). Such a function format is the minimum unit of a CLAUSE.

• Finally, each CLAUSE is concatenated with another CLAUSE by the terminal CCOMP (e.g., “HOPE ( LIAM,
NONE, NONE ) CCOMP PREFER ( DOG, NONE, NONE )”).

Task In-context Example Testing Example

Passive to Active The book was squeezed . Sophia squeezed the donut .
SQUEEZE ( NONE , BOOK , NONE ) SQUEEZE ( SOPHIA , DONUT , NONE )

Object to Subject Henry liked a cockroach in a box . A cockroach inflated a boy .
LIKE ( HENRY , IN ( COCKROACH , BOX ) INFLATE ( COCKROACH , BOY , NONE )

Composite Task The book was squeezed .
SQUEEZE ( NONE , BOOK , NONE )

A cockroach squeezed the hedgehog .

Henry liked a cockroach in a box .
LIKE ( HENRY , IN ( COCKROACH , BOX )

SQUEEZE ( COCKROACH , hedgehog , NONE )

Table 9.4: Testing examples of Passive to Active and Object to Subject, red text shows the verbs changing from passive
to active voice in simple tasks, and blue text shows the nouns from objective to subjective.

Task Example

Phrase Input The baby on a tray in the house screamed .
Recombination Output SCREAM ( ON ( BABY , IN ( TRAY , HOUSE ) ) , NONE , NONE )

Longer Chain Input A girl valued that Samuel admired that a monkey liked that Luna liked that Oliver respected that
Savannah hoped that a penguin noticed that Emma noticed that the lawyer noticed that a cake grew .

Output VALUE ( GIRL , NONE , NONE ) \
CCOMP ADMIRE ( SAMUEL , NONE , NONE ) \
CCOMP LIKE ( MONKEY , NONE , NONE ) \
CCOMP LIKE ( LUNA , NONE , NONE ) \
CCOMP RESPECT ( OLIVER , NONE , NONE ) \
CCOMP HOPE ( SAVANNAH , NONE , NONE ) \
CCOMP NOTICE ( PENGUIN , NONE , NONE ) \
CCOMP NOTICE ( EMMA , NONE , NONE ) \
CCOMP NOTICE ( LAWYER , NONE , NONE ) \
CCOMP GROW ( NONE , CAKE , NONE )

Composite Task Input The baby on a tray in the house valued that Samuel admired that a monkey liked that Luna liked that
Oliver respected that Savannah hoped that a penguin noticed that Emma noticed that the lawyer noticed
that a cake grew .

Output VALUE ( ON ( BABY , IN ( TRAY , HOUSE ) , NONE , NONE ) \
CCOMP ADMIRE ( SAMUEL , NONE , NONE ) \
CCOMP LIKE ( MONKEY , NONE , NONE ) \
CCOMP LIKE ( LUNA , NONE , NONE ) \
CCOMP RESPECT ( OLIVER , NONE , NONE ) \
CCOMP HOPE ( SAVANNAH , NONE , NONE ) \
CCOMP NOTICE ( PENGUIN , NONE , NONE ) \
CCOMP NOTICE ( EMMA , NONE , NONE ) \
CCOMP NOTICE ( LAWYER , NONE , NONE ) \
CCOMP GROW ( NONE , CAKE , NONE )

Table 9.5: Testing examples of Phrase Recombination and Longer Chain, red text shows the phrase serving as primitives
in sentences in simple tasks, and blue text shows the logical structures as sub-sentences in long sentences.
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In the following, we provide a detailed explanation of our two composite tasks in translation tasks.

Passive to Active and Object to Subject Transformation. Based on the generalization tasks identified in Kim and
Linzen [2020]), we select two distinct challenges for our study as two simple tasks. Passive to Active: Transitioning
sentences from Passive to Active voice. Object to Subject: Changing the focus from Object to Subject using common
nouns. These tasks serve as the basis for our composite task, where both transformations are applied simultaneously to
the same sentence. Examples illustrating this dual transformation can be found in Table 9.4.

Enhanced Phrase Subject with Longer Chain. COFE proposed two compositional generalization tasks (Figure 2 in
An et al. [2023b]): Phrase Recombination (PhraReco): integrate a prepositional phrase (e.g., “A in B”) into a specific
grammatical role (e.g., “subject”, “object”); Longer Chain (LongChain): Extend the tail of the logical form in sentences.
We consider these two generalization tasks as two simple tasks, merging them to form a composite task. In particular,
we substitute the sentence subject in the Longer Chain task with a prepositional phrase from the Phrase Recombination
task, creating a more complex task structure. Detailed examples of this combined task can be found in Table 9.5.

9.3 Theory for Confined Support

9.3.1 Compositional Ability with Model Scale

We then show that if simple tasks have confined support, the compositional ability of language models will increase as
the model scale increases. We demonstrate this by showing that the accuracy of the model on each simple task improves
with a larger model scale.

Note that the optimal solutions of the parameter matrices are W ∗PV and W ∗KQ. We naturally consider that the rank
of the parameter matrices W ∗PV and W ∗KQ can be seen as a measure of the model’s scale. A higher rank in these
matrices implies that the model can process and store more information, thereby enhancing its capability. We state the
following theorem.

Theorem 9.3.1. Suppose a composite task satisfies confined support. Suppose that we have (x1, y1, . . . , xN , yN , xq)
as a testing input prompt and the corresponding W where yi = Wxi. As rank r decreases, EW,x1,··· ,xN

[Accθ] will
have a smaller upper bound.

Theorem 9.3.1 shows the expected accuracy of a model on composite tasks is subjected to a lower upper bound as
the scale of the model diminishes. This conclusion explains why scaling up helps the performance when the model
exhibits compositional ability for certain tasks (those we call “separable composite tasks”). One common characteristic
of these tasks is their inputs display confined supports within the embeddings. This is evidenced by the model’s decent
performance on tasks as presented in Table 4.4 and Figure 4.3, where inputs are composed of parts.

9.3.2 Case Study of Confined Support

Our theoretical conclusion shows the model behavior regarding input embedding. It states that the model will have
compositional ability if tasks are under confined support of input embedding. To illustrate such theoretical concepts and
connect them to empirical observations, we specialize the general conclusion to settings that allow easy interpretation
of disjoint. In this section, we provide a toy linear case study on classification tasks, showing how confined support
on embedding can be decomposed and composite tasks can be solved. We assume δ = ϵ = 0 in the following simple
example.

Consider that there are only two simple tasks for some random objects with the color red and blue and the shape square
and round: (1) binary classification based on the color red and blue. (2) binary classification based on shape: circle and
square. However, during evaluation, the composite task is a four-class classification, including red circle, red square,
blue circle, and blue square.

Then we have two simple tasks K = 2. Consider the input embedding x = (a, b), where a ∈ R2, b ∈ R2, d = 4.

Consider W =

(
1 −1 0 0
0 0 1 −1

)
and y = Wx.

Consider the inputs from simple and composite tasks as:

• Task 1: Red: x1 = (1, 0, 0, 0), y1 = (1, 0) and blue: x2 = (0, 1, 0, 0), y2 = (−1, 0).
• Task 2: Circle x3 = (0, 0, 1, 0) y3 = (0, 1) and square x4 = (0, 0, 0, 1) y4 = (0,−1).
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• Composed task: red circle x5 = (1, 0, 1, 0), y5 = (1, 1), red square x6 = (1, 0, 0, 1), y6 = (1,−1), blue circle
x7 = (0, 1, 1, 0) y7 = (−1, 1) and blue square x8 = (0, 1, 0, 1) y8 = (−1,−1).

Suppose that we have the optimal solution ŷq as in Eq. 9.1. Given xq = (1, 0, 1, 0) as a testing input for a red circle
example, During the test, we have different predictions given different in-context examples:

1. Given only examples from Task 1 (red and blue): [(x1, y1), (x2, y2)], we have ŷq = (1, 0) can only classify
the color as red.

2. Given only examples from Task 2 (square and circle): [(x4, y4), (x3, y3)], we have ŷq = (0, 1) only classify
the shape as a circle.

3. Given a mixture of examples from Task 1 and 2 (red and circle): [(x1, y1), (x3, y3)], we have ŷq = (1, 1) can
classify as red and circle.

We can see that in the final setting, the model shows compositional ability. This gives a concrete example for the
analysis in Theorem 4.4.4.

9.4 Deferred Proof

In this section, we provide a formal setting and proof. We first formalize our model setup.

9.4.1 Linear self-attention networks.

These networks are widely studied [Von Oswald et al., 2023; Akyürek et al., 2023; Mahankali et al., 2023; Garg et al.,
2022; Zhang et al., 2023b; Shi et al., 2023d]. Following them, we consider the following linear self-attention network
with parameters θ = (WPV ,WKQ):

fLSA,θ(E) = E +WPV E · E
⊤WKQE

N
.

The prediction of the model for xq is ŷq = [fLSA,θ(E)](d+1):(d+K),N+1, the bottom rightmost sub-vector of fLSA,θ(E)
with length K. Let

WPV =

(
WPV

11 WPV
12

(WPV
21 )⊤ WPV

22

)
∈ R(d+K)×(d+K),WKQ =

(
WKQ

11 WKQ
12

(WKQ
21 )⊤ WKQ

22

)
∈ R(d+K)×(d+K),

where WPV
11 ∈ Rd×d, WPV

12 ,WPV
21 ∈ Rd×K , and WPV

22 ∈ RK×K ; similar for WKQ. Then the prediction is

ŷq=
(
(WPV

21 )⊤ WPV
22

)(EE⊤

N

)(
WKQ

11

(WKQ
21 )⊤

)
xq. (9.1)

We observe only part of the parameters affect our prediction, so we treat the rest of them as zero in our analysis.

9.4.2 Proof of Compositional Ability under Confined Support

Here, we provide the proof of our main conclusion regarding Theorem 4.4.4 and Section 4.4.2.

Without abuse of notation, we denote U = WKQ
11 , u = WPV

22 .

We also add some mild assumptions.

1. The covariance matrix Λ of simple tasks will have the same trace to prevent the scale effect of different simple
tasks.

2. The spectral norm of Λ is bounded on both sides m ≤ ∥Λ∥ ≤M .

We first introduce the lemma where the language model only pretrained on one simple task (K = 1). The pretraining
loss L(θ) can be refactored, and the solution will have a closed form. We further discuss the following.

Lemma 9.4.1 (Lemma 5.3 in Zhang et al. [2023b]). Let Γ :=
(
1 + 1

N

)
Λ + 1

N tr(Λ)Id×d ∈ Rd×d. Let

ℓ̃(U, u) = tr

[
1

2
u2ΓΛUΛU⊤ − uΛ2U⊤

]
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Then

min
θ

L(θ) = min
U,u

ℓ̃(U, u) + C = −1

2
tr[Λ2Γ−1] + C

where C is a constant independent with θ. For any global minimum of ℓ̃, we have uU = Γ−1.

As the above lemma construction, we denote the optimal solution as W ∗PV and W ∗KQ. Taking one solution as
U = Γ−1, u = 1, we observe the minimizer of global training loss is of the form:

W ∗PV =

(
0d×d 0d
0⊤d 1

)
,W ∗KQ =

(
Γ−1 0d
0⊤d 0

)
. (9.2)

We then prove our main theory Theorem 4.4.4 in Section 4.4.2, we first re-state below:
Theorem 4.4.4. Consider distinct tasks k and g with corresponding examples Sk,Sg. If two tasks have confined
support, and Assumption 4.4.2 is true, then with high probability, the model has the compositional ability as defined in
Definition 4.4.1. Moreover,

Accθ(Sk) + Accθ(Sg) ≤ Accθ(Sk∪g).

Proof of Theorem 4.4.4. WLOG, consider two simple tasks, K = 2. We have x = (a, b), where a ∈ Rd1 , b ∈
Rd2 , d1 + d2 = d. Since x only has large values on certain dimensions, it’s equivalent to just consider corresponding
dimensions in w, i.e., for simple task 1, we have w(1) = (wa, wδb), for simple task 2, we have w(2) = (wδa, wb).

We have x ∼ Λ, where:

Λ =

(
ΛKK ΛKG
ΛGK ΛGG

)
• Task 1: x = (a, 0d2)

⊤ + (0, bδ)
⊤, y = (w⊤

a a, 0) + (0, w⊤
δbbδ).

• Task 2: x = (0d1
, b)⊤ + (aδ, 0d2

)⊤, y = (0, w⊤
b b) + (w⊤

δaaδ), 0).

• Composed task: x = (a, b)⊤ + (aδ, bδ)
⊤, y = (w⊤

a a,w
⊤
b b) + (w⊤

δaaδ, w
⊤
δbbδ).

The form of E is,

E :=

(
a1 a2 . . . aN aq
b1 b2 . . . bN bq
y1 y2 . . . yN 0

)
+ Er ∈ R(d+2)×(N+1).

where Er represents the values caused by residual dimensions whose entries are bounded by δ.

Following Equation (4.3) in Zhang et al. [2023b], we have

EE⊤ =
1

N


∑N

i=1 aia
⊤
i + aqa

⊤
q

∑N
i=1 aib

⊤
i + aqb

⊤
q

∑N
i=1 aiy

⊤
i∑N

i=1 bia
⊤
i + bqa

⊤
q

∑N
i=1 bib

⊤
i + bqb

⊤
q

∑N
i=1 biy

⊤
i∑N

i=1 yia
⊤
i

∑N
i=1 yib

⊤
i

∑N
i=1 yiy

⊤
i

+ δ · o(EE⊤).

The WPV can be presented in block matrix

WPV =

 WPV
11 WPV

12 WPV
13

(WPV
21 )⊤ WPV

22 WPV
23

(WPV
31 )⊤ (WPV

32 )⊤ WPV
33

 ∈ R(d1+d2+2)×(d1+d2+2)

We can apply Lemma 9.4.1 into optimization and recall

W ∗KQ =

(
Γ−1
all 0d
0⊤d 0

)
.

where Γ−1
all ∈ R(d1+d2)×(d1+d2). Consider two tasks only related to disjoint dimension of x, we also have σ(ΛKG) =

σ(ΛGK) ≤ ϵ. Denote
Λ = Λ̃ + Λr
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where

Λ̃ =

(
ΛKK

ΛGG

)
,Λr =

(
ΛKG

ΛGK

)
We apply Lemma 9.4.1 Recall Γ :=

(
1 + 1

N

)
Λ + 1

N tr(Λ)Id×d ∈ Rd×d, we have:

Γ =

(
1 +

1

N

)
Λ̃ +

1

N
tr(Λ̃)Id×d +

(
1 +

1

N

)
Λr

= Γ̃ + Γr

where denote Γr =
(
1 + 1

N

)
Λr. We have:

Γ−1 = Γ̃−1 − Γ̃−1ΓrΓ̃
−1 +O(Γr)

We denote

Γ̃ =

(
Γ1 0
0 Γ2

)
,

where Γ1 =
(
1 + 1

N

)
ΛKK + 1

N tr(Λ)Id1
∈ Rd1×d1 and Γ2 =

(
1 + 1

N

)
ΛGG + 1

N tr(Λ)Id2
∈ Rd2×d2 . Then we have;

Γ−1 =

(
Γ−1
1 0
0 Γ−1

2

)
+A

where σ(A) ≤ 2m2ϵ.

Then, It’s similar to applying Lemma 9.4.1 for pretraining separately into dimensions corresponding to different tasks.
We solve similarly to WKQ.

We have:

fθ(E) =

(
0d1×d1

0d1×d2
0d1×2

0d2×d1
0d2×d2

0d2×2

02×d1 02×d2 I2

)
EE⊤

 Γ−1
1 0d1×d2

0d1×2

0d2×d1
Γ−1
2 0d2×2

02×d1
02×d2

02×2

(aqbq
0

)
+ Ã (9.3)

ŷq =
1

N

(
N∑
i=1

yia
⊤
i ,

N∑
i=1

yib
⊤
i ,

N∑
i=1

yiy
⊤
i

)Γ−1
1 aq

Γ−1
2 bq
0

+ v (9.4)

=

(
1

N

N∑
i=1

yia
⊤
i

)
Γ−1
1 aq +

(
1

N

N∑
i=1

yib
⊤
i

)
Γ−1
2 bq + v (9.5)

=
1

N

(
a⊤q Γ

−1
1

∑N
i=1 y

(1)
i ai

b⊤q Γ
−1
2

∑N
i=1 y

(2)
i bi

)
+ v. (9.6)

where Ã representing residual matrix whose norm can be bounded by O(m2ϵδ) Recall x ∼ N(0,Λ), then with high
probability each entry in v will be bounded by Cm2δϵ for some constant C.

WLOG, we write residual vectors as 0 vector for simplicity of notation, and only consider residuals for estimations ŷ.
Note that we composed example x = (a, b)⊤, y = (w⊤

a a,w
⊤
b b). For simplicity, we write ŵa = 1

N Γ−1
1

∑N
i=1 y

(1)
i ai,

similarly, ŵb =
1
N Γ−1

2

∑N
i=1 y

(2)
i bi.

Given in-context examples from one simple task only, consider that we have N examples from simple task 1, S1 =[
{(ai, 0), yi}Ni=1

]
. We have ŵ(1) = (ŵa, 0d2

), ŵ(2) = (0d), and we also have ŷq = (ŷ
(1)
q , 0)⊤, where ŷ

(1)
q =

a⊤q Γ
−1
1

(
1
N

∑N
i=1 y

(1)
i ai

)
+ Cm2δϵ. We have Accθ(S1) =

1(ỹ(1)
q =y(1)

q )
2 .

Similarly, for N in-context examples only from task 2, we have ŵ(1) = (0d), ŵ
(2) = (0d1 , ŵb), ŷq = (0, ŷ

(2)
q )⊤, where

ŷ
(2)
q = a⊤q Γ

−1
2

(
1
N

∑N
i=1 y

(2)
i bi

)
+ Cm2δϵ. We have Accθ(S2) =

1(ỹ(2)
q =y(2)

q )
2 .

Then we have S1∪2 contains 2N in-context examples from both tasks, specifically, we have N from task 1 and rest
from task 2. We have ŵ(1) = (ŵa/2, 0d2

), ŵ(2) = (0d1
, ŵb/2), ŷq = (ŷ

(1)
q , ŷ

(2)
q )⊤.
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Since y
(k)
τ,q = sgn(⟨wτ , xτ,q⟩), ỹ(k)τ,q = sgn

(
ŷ
(k)
τ,q

)
, following the proof of Lemma 9.4.2, where Accθ only concerns the

direction of ŵ and w, we have Accθ(S1∪2) =
1(ỹ(1)

q =y(1)
q )+1(ỹ(2)

q =y(2)
q )

2 .

Extending the above analysis into any of two simple tasks, when the composite task integrates them, we have

Accθ(Sk) + Accθ(Sg) ≤ Accθ(Sk∪g). (9.7)

We then prove Section 4.4.2, and we first restate it below.

If two tasks do not have confined support, there exists one setting in which we have

Accθ(Sk) = Accθ(Sg) = Accθ(Sk∪g).

Proof of Section 4.4.2. WLOG, consider two simple tasks, K = 2. We have x = (a, b), where a ∈ Rd1 , b ∈
Rd2 , d1 + d2 = d. Consider the setting where w also have the same active dimensions, i.e., for simple task 1, we have
w(1) = (wa, 0), for simple task 2, we have w(2) = (0, wb).

We have x ∼ Λ. Consider tasks are overlapping on all dimensions, where:

• Task 1: x = (a(1), b(1))⊤, y = (w⊤
a a

(1), w⊤
b b

(1)).

• Task 2: x = (a(2), b(2))⊤, y = (w⊤
a a

(2), w⊤
b b

(2)).

• Composed task: x = (a, b)⊤, y = (w⊤
a a,w

⊤
b b).

Similarly, we have:

ŷq =
1

N

(
N∑
i=1

yia
⊤
i ,

N∑
i=1

yib
⊤
i ,

N∑
i=1

yiy
⊤
i

)Γ−1
1 aq

Γ−1
2 bq
0

 (9.8)

=

(
1

N

N∑
i=1

yia
⊤
i

)
Γ−1
1 aq +

(
1

N

N∑
i=1

yib
⊤
i

)
Γ−1
2 bq (9.9)

=
1

N

(
a⊤q Γ

−1
1

∑N
i=1 y

(1)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(1)
i bi

a⊤q Γ
−1
1

∑N
i=1 y

(2)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(2)
i bi

)
. (9.10)

Note that composed example x = (a, b)⊤, y = (w⊤
1 a,w

⊤
2 b).

When in-context examples are from a simple task, we have N examples from simple task 1, S1 =[{
(a

(1)
i , b

(1)
i ), yi

}N

i=1

]
, and ŷq has the same form as Eq. 9.10, similarly, for task 2.

Suppose S1∪2 contains 2N examples from both tasks, where N from task 1 and rest from task 2. We have

ŷq =
1

2N

(
a⊤q Γ

−1
1

∑N
i=1 y

(1)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(1)
i bi

a⊤q Γ
−1
1

∑N
i=1 y

(2)
i ai + b⊤q Γ

−1
2

∑N
i=1 y

(2)
i bi

)
. (9.11)

We finish the proof by checking that Eq. 9.10 and Eq. 9.11 share the same direction.

9.4.3 Proof of Compositional Ability with Model Scale

Here, we provide the proof of our conclusions in Theorem 9.3.1 in Section 9.3.1 with respect to model performance and
model scale. We first introduce a lemma under the K = 1 setting.
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Accuracy under K = 1

When K = 1, we can give an upper bound of accuracy by Λ and Γ. Taking into account the optimal solution in Eq. 9.2,
we have the following accuracy lemma.
Lemma 9.4.2. Consider K = 1 and xq ∼ N (0, Id). When N > C, where C is a constant, we have

Ewτ ,x1,··· ,xN
[Accθ] ≤ tr(Γ−1Λ).

Proof of Lemma 9.4.2. Since K = 1, the problem reduces to the linear regression problem in ICL. Consider the
solution form in Lemma 9.4.1, we have

ŷq = x⊤
q

1

N
Γ−1

N∑
i=1

⟨wτ , xi⟩xi

We re-write the form as ŷq = x⊤
q ŵ. Following Equation (4.3) in Zhang et al. [2023b], we have:

ŵ =
1

N
Γ−1

N∑
i=1

⟨wτ , xi⟩xi.

Recall the definition of Accθ and y
(k)
τ,q = sgn(⟨wτ , xτ,q⟩), ỹ(k)τ,q = sgn

(
ŷ
(k)
τ,q

)
= sgn(⟨ŵ, xτ,q⟩), for any α > 0, we

have:

Ewτ ,x1,··· ,xN ,xq
[Accθ] = P (⟨xq, wτ ⟩ > 0, ⟨xq, αŵ⟩ > 0) + P (⟨xq, wτ ⟩ < 0, ⟨xi, αŵ⟩ < 0) .

Denote hyperplane orthogonal to w as Pw and similar to Pŵ. Recall that xq is independent of other samples. We
have the expectation conditioned on wτ , x1, · · · , xN is the probability that xq falls out of the angle between Pw and
Pŵ. Denote the angle between w and ŵ as θ̃. As xq is uniform along each direction (uniform distribution or isotropic

Gaussian), then the probability is 1− |θ̃|
π given wτ , x1, · · · , xN . Then Ewτ ,x1,··· ,xN

[Accθ] = Ewτ ,x1,··· ,xN

[
1− |θ̃|

π

]
.

Note that

Ewτ ,x1,··· ,xN

[
cos(θ̃)

]
=

〈
wτ

∥wτ∥2
,

ŵ

∥ŵ∥2

〉
.

As, we can choose α, w.l.o.g, we take ∥wτ∥ = ∥ŵ∥ = 1, then we have

Ewτ ,x1,··· ,xN

[
cos(θ̃)

]
= Ewτ

[Ex1,··· ,xN
[⟨wτ , ŵ⟩ |wτ ]] .

Given wτ , we have

E[ŵ|wτ ] =
1

N
Γ−1

N∑
i=1

E [⟨wτ , xi⟩xi|wτ ]

=
1

N
Γ−1

N∑
i=1

Λwτ

= Γ−1Λwτ .

Then, we have

Ewτ
[⟨ŵ, wτ ⟩] =

〈
Γ−1Λw⊤

τ , wτ

〉
= tr(Γ−1Λ).

Thus, we have

E cos(θ̃) = tr(Γ−1Λ) (9.12)

E [Accθ] = E

[
1− |θ̃|

π

]
. (9.13)

Note that when θ ≤ π
6 , we have 1− |θ̃|

π ≤ cos(θ). Thus, as N > C where C is constant, we have ŵ and wτ are closed
and satisfy θ ≤ π

6 . Then we get the statement.
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Model scale on composite tasks

Here, we present proof for model scale and performance on composite tasks. Recall we consider the rank of W ∗PV and
W ∗KQ as a measure of the model’s scale.

We first introduce a lemma about U as an optimal full-rank solution.

Lemma 9.4.3 (Corollary A.2 in Zhang et al. [2023b]). The loss function ℓ̃ in Lemma 9.4.1 satisfies

min
U∈Rd×d,u∈R

ℓ̃(U, u) = −1

2
tr[Λ2Γ−1],

where U = cΓ−1, u = 1
c for any non-zero constant c are minimum solution. We also have

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F
. (9.14)

As the scale of the model decreases, the rank of U also reduces, leading to an optimal reduced rank solution Ũ . Our
findings reveal that this reduced rank Ũ can be viewed as a truncated form of the full-rank solution U . This implies
that smaller-scale models are essentially truncated versions of larger models, maintaining the core structure but with
reduced complexity.

Recall Λ is the covariance matrix, we have eigendecomposition Λ = QDQ⊤, where Q is an orthonormal matrix
containing eigenvectors of Λ and D is a sorted diagonal matrix with non-negative entries containing eigenvalues of Λ,
denoting as D = diag([λ1, . . . , λd]), where λ1 ≥ · · · ≥ λd ≥ 0. We introduce the lemma below.

Lemma 9.4.4 (Optimal rank-r solution). Recall the loss function ℓ̃ in (Lemma 9.4.1). Let

U∗, u∗ = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u).

Then U∗ = cQV ∗Q⊤, u = 1
c , where c is any non-zero constant and V ∗ = diag([v∗1 , . . . , v

∗
d]) is satisfying for any

i ≤ r, v∗i = N
(N+1)λi+tr(D) and for any i > r, v∗i = 0.

Then, we proof the Lemma 9.4.4

Proof of Lemma 9.4.4. Note that,

argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u) = argmin
U∈Rd×d,rank(U)≤r,u∈R

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u)

= argmin
U∈Rd×d,rank(U)≤r,u∈R

(
ℓ̃(U, u)− min

U∈Rd×d,u∈R
ℓ̃(U, u)

)
.

Thus, we may consider Eq. 9.14 in Lemma 9.4.3 only. On the other hand, we have

Γ =

(
1 +

1

N

)
Λ +

1

N
tr(Λ)Id×d

=

(
1 +

1

N

)
QDQ⊤ +

1

N
tr(D)QId×dQ

⊤

=Q

((
1 +

1

N

)
D +

1

N
tr(D)Id×d

)
Q⊤.

We denote D′ =
(
1 + 1

N

)
D + 1

N tr(D)Id×d. We can see Λ
1
2 = QD

1
2Q⊤, Γ

1
2 = QD′ 1

2Q⊤, and Γ−1 = QD′−1
Q⊤.

We denote V = uQ⊤UQ. Since Γ and Λ are commutable and the Frobenius norm (F-norm) of a matrix does not
change after multiplying it by an orthonormal matrix, we have Eq. 9.14 as

ℓ̃(U, u)− min
U∈Rd×d,u∈R

ℓ̃(U, u) =
1

2

∥∥∥Γ 1
2

(
uΛ

1
2UΛ

1
2 − ΛΓ−1

)∥∥∥2
F

=
1

2

∥∥∥Γ 1
2Λ

1
2

(
uU − Γ−1

)
Λ

1
2

∥∥∥2
F

=
1

2

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F
.
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As WKQ is a matrix whose rank is at most r, we have V is also at most rank r. Then, we denote V ∗ =

argminV ∈Rd×d,rank(V )≤r

∥∥∥D′ 1
2D

1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

. We can see that V ∗ is a diagonal matrix. Denote D′ =

diag([λ′
1, . . . , λ

′
d]) and V ∗ = diag([v∗1 , . . . , v

∗
d]). Then, we have∥∥∥D′ 1

2D
1
2

(
V −D′−1

)
D

1
2

∥∥∥2
F

(9.15)

=

d∑
i=1

(
λ′
i

1
2λi

(
v∗i −

1

λ′
i

))2

(9.16)

=

d∑
i=1

((
1 +

1

N

)
λi +

tr(D)

N

)
λ2
i

(
v∗i −

1(
1 + 1

N

)
λi +

tr(D)
N

)2

. (9.17)

As V ∗ is the minimum rank r solution, we have that v∗i ≥ 0 for any i ∈ [d] and if v∗i > 0, we have v∗i = 1

(1+ 1
N )λi+

tr(D)
N

.

Denote g(x) =
((

1 + 1
N

)
x+ tr(D)

N

)
x2

(
1

(1+ 1
N )x+ tr(D)

N

)2

= x2

(
1

(1+ 1
N )x+ tr(D)

N

)
. It is easy to see that g(x) is an

increasing function on [0,∞). Now, we use contradiction to show that V ∗ only has non-zero entries in the first r
diagonal entries. Suppose i > r, such that v∗i > 0, then we must have j ≤ r such that v∗j = 0 as V ∗ is a rank r solution.
We find that if we set v∗i = 0, v∗j = 1

(1+ 1
N )λj+

tr(D)
N

and all other values remain the same, Eq. 9.17 will strictly decrease

as g(x) is an increasing function on [0,∞). Thus, here is a contradiction. We finish the proof by V ∗ = uQ⊤U∗Q.

We then ready to prove the Theorem 9.3.1 in Section 9.3.1, we first re-state it below.
Theorem 9.3.1. Suppose a composite task satisfies confined support. Suppose that we have (x1, y1, . . . , xN , yN , xq)
as a testing input prompt and the corresponding W where yi = Wxi. As rank r decreases, EW,x1,··· ,xN

[Accθ] will
have a smaller upper bound.

Proof of Theorem 9.3.1. We first prove in a simple task setting (K = 1), that the accuracy will have such a conclusion.
By Lemma 9.4.2, consider xq ∼ N (0, Id). When N > C, where C is a constant, we have

Ewτ ,x1,··· ,xN
[Accθ] ≤ tr(Γ−1Λ).

Recall Lemma 9.4.4. WLOG, we take c = 1. We have

tr(Γ−1Λ) = tr (QV ∗DQ)

=

r∑
i=1

N

N + 1 +
∑r

j=1
λj

λi

,

where second equation comes from Lemma 9.4.4.

Under the confined support setting, the same conclusion holds since Eq. 9.7 in the proof of Theorem 4.4.4.
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