

Towards Better Adaptation of Foundation Models

Zhuoyan Xu

Committee: Yingyu Liang, Yin Li, Yiqiao Zhong, Junjie Hu

Foundation Models

Figures from: On the opportunities and risks of foundation models, 2021.

Evolution of Foundation Models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.

Pretrained FMs are generalists:

There are gaps between these general models and specialized tasks.

Same task, different data

New tasks require reasoning

• 67 -> sixty-seven

• 31 + 25 -> fifty-six (?)

Tasks with resource constrain

FP32	6,480 TFLOPS	180 TFLOPS
FP64	3,240 TFLOPS	90 TFLOPS
FP64 Tensor Core	3,240 TFLOPS	90 TFLOPS
GPU Memory Bandwidth	Up to 13.5 TB HBM3e 576 TB/s	Up to 384 GB HBM3e 16 TB/s
NVLink Bandwidth	130TB/s	3.6TB/s

GB200 NVL72¹ Specs

https://www.nvidia.com/en-us/data-center/gb200-nvI72/

Adaptation to new tasks:

Simple Task

Distribution Shift Compositional Task

Resource-Constrained Task

My Work

Foundation models (FMs) are trained as generalists, my research:

- **1**. Enables FMs to better specialize in tasks in different domains
- 2. Advances FMs' ability to handle complex problems by combining simple tasks
- 3. Make FMs more deployable by reducing computational overhead

Efficient Inference

Compositional Ability * bird **BIRD** B (house hat) hat house 6 (* pie * sports) ? ß

Efficient Inference

Few-Shot Adaptation

Multitask Finetuning

New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning _____re-training + adaptation

New Paradigm: Pre-trained Representations

New Paradigm: Pre-trained Representations

Figure 1: Matching Networks architecture

Adaptation of a pre-trained image encoder

Figures from: Matching Networks for One Shot Learning, 2017.

What does pre-training look like?

- Supervised learning
- Self-supervised learning:
 - Next sentence prediction (BERT)
 - Masked language prediction (BERT, RoBERTa)
 - Auto-regressive language modeling (GPT, Llama)
 - Contrastive learning (SimCLR, SimCSE, CLIP, DINO)

Contrastive Learning

SimCLR - (Image, Image) No need labels

Image Data Augmentation

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Few-Shot Learning: Pretraining + Fine Tuning

Label Efficiency

Figures from: On the opportunities and risks of foundation models, 2021.

Figures from: <u>https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang</u>, 2020

Paradigm: Pre-training + Adaptation

Pre-training + Finetuning + Adaptation

An example of 4-shot 2-class image classification

Figures from: Meta-Learning: Learning to Learn Fast, 2018.

Problem Setup - Hidden representation data model

- Class $~y \in \mathcal{C}~$ over distribution $~y \sim \eta$
- Task $\mathcal{T} = (y_1, \dots, y_K) \subseteq \mathcal{C}$, sample $x \sim \mathcal{D}(y)$
- $\phi \in \Phi$ hypothesis class of representation functions, e.g. ResNet, ViT
- $g(x) = W\phi(x)$ as prediction logits of latent class

Problem Setup - Objective for a downstream task

- Class $y \in \mathcal{C}~$ over distribution $~y \sim \eta~$
- Task $\mathcal{T} = \{y_1, y_2\} \subseteq \mathcal{C} \ x \sim \mathcal{D}(y)$, instance
- $g(x) = W\phi(x)$ as prediction logits of latent class
- Supervised loss w.r.t a task:

$$\mathcal{L}_{\sup} (\mathcal{T}, \phi) := \min_{W} \mathbb{E}_{y \sim \mathcal{T}_{x \sim \mathcal{D}(y)}} \mathbb{E} [\ell(W\phi(x), y)] \qquad \mathcal{T}$$

Pretraining - Contrastive learning

• Contrastive loss: $\mathbb{E}\left[-\log\left(\frac{e^{\phi(x)^{\top}\phi(x^{+})}}{e^{\phi(x)^{\top}\phi(x^{+})} + e^{\phi(x)^{\top}\phi(x^{-})}}\right)\right]$

positive pair

negative pair

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

Pretraining - Supervised learning

- $y \sim \eta$ $x \sim \mathcal{D}(y)$
- supervised loss: $\ell(g(x), y) = \ell_u \left((g(x))_y (g(x))_{y' \neq y, y' \in \mathcal{C}} \right)$ $\mathcal{L}_{sup-pre}(\phi) = \min_W \mathbb{E}_{x,y} [\ell(W\phi(x), y)]$
- In particular: $\ell_u(v) = \log(1 + \exp(-v))$ will recover the logistic loss

To simplify notation, we will use $\mathcal{L}_{pre}(\phi)$, we denote pretrained model as $\hat{\phi}$

Problem Setup - Multitask Finetuning

- Suppose we construct M tasks $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_M\}$
- Suppose each task with **m** sample $S_i := \{(x_j^i, y_j^i) : j \in [m]\}$
- Given pretrained $\hat{\phi}$. We further multitask finetune it by objective:

Diversity and Consistency

Definition 1 (Diversity and Consistency (Informal))

Consider the latent feature space of target task data and finetuning task data. **Diversity** refer to the coverage of the finetuning tasks on the target task in the latent feature space. **Consistency** refer to similarity in the feature space.

• Suppose target task is \mathcal{T}_0

Main Result

- Suppose target task is \mathcal{T}_0
- Let $\phi^* \in \Phi$ denote the model with the lowest target task loss $\mathcal{L}_{sup}\left(\mathcal{T}_0,\phi^*
 ight)$
- We want to bound $\mathcal{E}(\phi) = \mathcal{L}_{\sup} (\mathcal{T}_0, \phi) \mathcal{L}_{\sup} (\mathcal{T}_0, \phi^*)$
- Pretraining loss as $\hat{\mathcal{L}}_{\mathrm{pre}}\left(\hat{\phi}
 ight)$

Theorem (Multitask finetuning loss (Informal))

Suppose in pretraining we have empirical pretraining loss $\hat{\mathcal{L}}_{\text{pre}}(\hat{\phi}) \leq \epsilon_0$ The error will be $\mathcal{E}(\hat{\phi}) \leq \mathcal{O}(\epsilon_0)$. After sufficient multitask finetuning and get ϕ' , the error will be $\mathcal{E}(\phi') \leq \mathcal{O}(\alpha \epsilon_0)$ with high probability. The finetuning sample complexity will be $\Omega\left(\frac{1}{\alpha \epsilon_0}\right)$.

Practical solution: Task selection

Practical solution: Task selection

Algorithm 1 Consistency-Diversity Task Selection

Input: Target task \mathcal{T}_0 , candidate finetuning tasks: $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_M\}$, model ϕ , threshold p. 1: Compute $\phi(\mathcal{T}_i)$ and $\mu_{\mathcal{T}_i}$ for $i = 0, 1, \dots, M$. 2: Sort \mathcal{T}_i 's in descending order of similarity $(\mathcal{T}_i \mid \mathcal{T}_i)$. Denote the sorted list as $(\mathcal{T}_i' \mid \mathcal{T}_i') = \mathcal{T}_i'$

- 2: Sort *T_i*'s in descending order of similarity (*T*₀, *T_i*). Denote the sorted list as {*T*₁', *T*₂', ..., *T_M*}.
 3: L ← {*T*₁'}
- 4: for i = 2, ..., M do
- 5: If coverage $(L \cup \mathcal{T}'_i; \mathcal{T}_0) \ge (1+p) \cdot \operatorname{coverage}(L; \mathcal{T}_0)$, then $L \leftarrow L \cup \mathcal{T}'_i$; otherwise, break.
- 6: **end for**

Output: selected data L for multitask finetuning.

Experiments: Few-shot Vision tasks

Testing

Figure 1: Matching Networks architecture

Experiments: Verification of Theoretical Analysis

Figure 3: Results on ViT-B backbone pretrained by MoCo v3. (a) Accuracy v.s. number of shots per finetuning task. Different curves correspond to different total numbers of samples Mm. (b) Accuracy v.s. the number of tasks M. Different curves correspond to different numbers of samples per task m. (c) Accuracy v.s. number of samples per task m. Different curves correspond to different numbers of tasks M.

Experiments: Task selection algorithm

Pretrained	Selection	INet	Omglot	Acraft	CUB	QDraw	Fungi	Flower	Sign	сосо
CLIP	Random	56.29	65.45	31.31	59.22	36.74	31.03	75.17	33.21	30.16
	No Con.	60.89	72.18	31.50	66.73	40.68	35.17	81.03	37.67	34.28
	No Div.	56.85	73.02	32.53	65.33	40.99	33.10	80.54	34.76	31.24
	Selected	60.89	74.33	33.12	69.07	41.44	36.71	80.28	38.08	34.52
DINOv2	Random	83.05	62.05	36.75	93.75	39.40	52.68	98.57	31.54	47.35
	No Con.	83.21	76.05	36.32	93.96	50.76	53.01	98.58	34.22	47.11
	No Div.	82.82	79.23	36.33	93.96	55.18	52.98	98.59	35.67	44.89
	Selected	83.21	81.74	37.01	94.10	55.39	53.37	98.65	36.46	48.08
MoCo v3	Random	59.66	60.72	18.57	39.80	40.39	32.79	58.42	33.38	32.98
	No Con.	59.80	60.79	18.75	40.41	40.98	32.80	59.55	34.01	33.41
	No Div.	59.57	63.00	18.65	40.36	41.04	32.80	58.67	34.03	33.67
	Selected	59.80	63.17	18.80	40.74	41.49	33.02	59.64	34.31	33.86

Table 1: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone. No Con.: Ignore consistency. No Div.: Ignore diversity. Random: Ignore both consistency and diversity.

Multitask Finetuning for Adaptation

Developed a targeted adaptation framework that:

- 1. Identifies and selects relevant data matching target task characteristics
- 2. Designs specialized multitask finetuning pipeline
- 3. Achieves strong performance with limited target data

Compositional Ability * bird **BIRD** S (house hat) hat house 6 (* pie * sports) ? B

Efficient Inference

Reasoning Abilities

In-context Learning

In-Context Learning (ICL)

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

Circulation revenue has increased by 5% in Finland. // Finance

They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. // _____

Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning, 2022.

Motivation

121

Simple tasks

input: (ball book) output: book ball input: (house hat)

output: hat house

\$

<u>ب</u>ا

Composite task

Just give me output. input: * toe output: TOE input: (farm frog) output: frog farm input: (* pie * sports) output: sports * pie * |X|

A Failure Case for Composition

	Composite	Composite in-context
Prompt	input: * apple output: APPLE input: (farm frog) output: frog farm input: (* bell * ford)	input: (* good * zebra) output: ZEBRA GOOD input: (* bicycle * add)
Truth	output: FORD BELL	output: ADD BICYCLE

Failure Case for LLM

Design Experiments to investigate

- 1. How do LLMs perform in various tasks?
- 2. Does scaling up the model help in general?
- 3. Is the variability in performance relevant to the nature of tasks?

Simple Logical Tasks

Tasks	Task	Input	Output
Words	(A) Capitalization	apple	APPLE
	(B) Swap	bell ford	ford bell
	(C) Two Sum	twenty @ eleven	thirty-one
	(D) Past Tense	pay	paid
	(E) Opposite	Above	Below
Numerical	(F) Plus One	435	436
	(G) Modular	15@6	3
	(H) Two Sum Plus One	12 # 5	18

Compositional Logical Tasks

Tasks	Simple Task	Simple Task	Composite
(A) + (B)	input: * apple	input: (farm frog)	input: (* bell * ford)
	output: APPLE	output: frog farm	output: FORD BELL
(A) + (C)	input: * (<i>five)</i>	input: <i>twenty</i> @ eleven	input: * (<i>thirty-seven</i> @ <i>sixteen)</i>
	output: FIVE	output: thirty-one	output: FIFTY-THREE
(G) + (H)	input: 15 @ 6	input: 12 # 5	input: 8 # 9 @ 7
	output: 3	output: 18	Ouput: 4
(A) + (F)	input: 435	input: cow	input: 684 cat
	output: 436	output: COW	output: 685 CAT

•

(G) + (H)

(A) + (F)

Compositional Ability

Ŵ

Definition1 (Compositional Ability)

Consider a composite tasks combines two simple tasks (A) and (B). Consider each simple tasks contains samples .

Given a composite test prompt, we say model has compositional ability on composite task (A) + (B) if model has higher accuracy using in-context examples from both (A) and (B) than from either single one.

Compositional ability under confined support (Informal)

Theorem (Compositional ability under confined support (Informal))

Consider input embedding $x \in \mathbb{R}^d$ of each simple tasks. Consider each simple has a disjoint subset of indices from $1, 2, \ldots, d$ ach simple task only has large values within its corresponding subsets of dimensions of input embeddings. Then with high probability, the model has the compositional ability.

Ŵ

ICL for compositional

Our findings on compositional ability in LLMs reveal:

1. Simple composition (distinct mappings on different inputs): Models perform

well and benefit from scaling

2. Complex composition (multi-step reasoning): Models struggle, with limited

gains from scaling

Efficient Inference

Ŵ

Current MLLMs lack adaptability to meet varying latency constraints in resourcelimited environments.

Prior approaches for MLLM efficiency provide static efficiency improvement:

- Compress models to fixed smaller size
- Use predetermined token selection strategies

Discussions

Additional Works

Scale Effects in In-Context Learning

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context learning differently? ICML, 2024.

OOD Generalization Through Induction Heads

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a lens through induction heads in transformers.

Proposed Works

Efficient Architecture-Guided LLM inference

Efficient LLM Inference

Computation-level optimization:

Zeliang Zhang et al. Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

Investigations on Architecture

Gabriel Ilharco. Editing Models with Task Arithmetic. ICLR 2023

Mor Geva. Transformer Feed-Forward Layers Build Predictions by Promoting Concepts in the Vocabulary Space. EMNLP 2022

Motivations

- 1. Our prior work showed promise in adaptive inference of MLLMs
- 2. Recent mechanistic interpretability findings reveal key architectural

components for different tasks

Can we combine them and develop training-free algorithms for component

selection, specialized for different tasks?

Efficient LLM Inference

Ŵ

- 1. Token-Level Optimization
 - a. Develop dynamic token selection strategies based on input
- 2. Mechanistically-Guided Component Selection
 - a. Identify crucial model components (attention heads) and patterns using

interpretability insights

3. Task-specific Patch

a. Develop training-free algorithms for component selection

Expected Outcome

1. New algorithms for interpretability-guided model inference

2. Improved understanding of architectural components in reasoning

3. Significant efficiency gains for specific tasks

Timeline

