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Figures from: On the opportunities and risks of foundation models, 2021.




Evolution of Foundation Models
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The history and evolution of foundation models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.



Pretrained FMs are generalists:

There are gaps between these general models and
specialized tasks.



Same task, different data
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New tasks require reasoning

* 56 + 33 -> 89
* 6/ -> sixty-seven

e 31 + 25 -> fifty-six (?)



Tasks with resource constrain

FP32 6,480 TFLOPS 180 TFLOPS

FP64 3,240 TFLOPS 90 TFLOPS

FP64 Tensor Core 3,240 TFLOPS 90 TFLOPS

GPU Memory | Bandwidth Up to 13.5 TB HBM3e | 576 TB/s Up to 384 GB HBM3e | 16 TB/s
NVLink Bandwidth 130TB/s 3.6TB/s

GB200 NVL72! Specs

https://www.nvidia.com/en-us/data-center/gh200-nvI72/



Adaptation to new tasks:
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My Work

Foundation models (FMs) are trained as generalists, my research:

1. Enables FMs to better specialize in tasks in different domains
2. Advances FMs’ ability to handle complex problems by combining simple tasks
3. Make FMs more deployable by reducing computational overhead
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Few-Shot Adaptation

Multitask Finetuning




New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning  —nre-training + adaptation
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New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning  =pse-training + adaptation
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New Paradigm: Pre-trained Representations

Figure 1: Matching Networks architecture

Adaptation of a pre-trained image encoder
Figures from: Matching Networks for One Shot Learning, 2017. 18



What does pre-training look like?

e Supervised learning

e Self-supervised learning:

O Next sentence prediction (BERT)

O Masked language prediction (BERT, RoBERTa)

O Auto-regressive language modeling (GPT, Llama)

o Contrastive learning (SimCLR, SimCSE, CLIP, DINO)
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Contrastive Learning

exp(sim(z;, z;)/7)

Maximize agreement 2N .
Z; - [mize agrecmen > Zj k=1 ]]'[k-‘,é‘l] EXP(SIm(zz', zk)/T)
90 fo0)
h; <— Representation —> h;

(f) Rotate {90°, 180°,270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

SimCLR - (Image, Image) Image Data Augmentation

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020
No need labels

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020
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o Few-Shot Learning:
¢ =9 Pretraining + Fine Tuning
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Figures from: On the opportunities and risks of foundation models, 2021.

Figures from: https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang, 2020
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https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang

Paradigm: Pre-training + Adaptation
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Q: Can we improve this?
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Pre-training + Finetuning + Adaptation
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Training Testing

An example of 4-shot 2-class image classification

Figures from: Meta-Learning: Learning to Learn Fast, 2018.
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https://lilianweng.github.io/posts/2018-11-30-meta-learning/

Problem Setup - Hidden representation data model

e Class Y € C over distribution (P Eland],

o Task 7 = (y1,...,yx) CC , sample x ~ D(y)
o ¢ € @ hypothesis class of representation functions, e.g. ResNet, ViT

° 9(37) = Wao(x) as prediction logits of latent class

y —— X — 6) — g(x) — loss

Do -j;;- _ g; l(g(x),y) =
g : : _ log exp (g(x)y) }
fi’d i 9K ! S exp (9(x)k)
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Problem Setup - Objective for a downstream task

e Class Y € C over distribution yn~nm
o Task 7 = {y1,y2} CC x ~ D(y) ,instance
o g(x) =We¢(x) as prediction logits of latent class

® Supervised loss w.r.t a task:

Lowp (T,¢) :=min E_ E  [{(We(z),y)] T

W y~Tz~D(y)

1
I
1
I

//’—*\\
y —— x —— ¢(x) —— g(xX) —— loss /// \'
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Pretraining - Contrastive learning

o (y,y7 ) ~n° z,at ~Dy) x” ~D(y ) T:
I ch(@) " o(a™)
El=log | Smmo@ 1 co@mo@)

® Contrastive loss:

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023
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Pretraining - Supervised learning

* Y~1n x~D(y)
® supervised loss: f(g(fl?), y) — Eu ((g(aj))y o (g(ﬂ?))yf¢y}yfe(j)

£Sup—pre(¢) — %ﬂ E:ﬂ,y[f(W‘?&(ﬁ)ﬂ y)]

e Inparticular: £, (v) = log(1 + exp(—w)) will recover the logistic loss

To simplify notation, we will use £yre(¢) , we denote pretrained model as @
29



Problem Setup - Multitask Finetuning

® Suppose we construct M tasks {71, 72,..., Tar}
® Suppose each task with m sample &; := {(i’fn y;) 1] € [m]}

e Given pretrained ¢ . We further multitask finetune it by objective:
M m

. 1 i F
glelg M Z ‘Cbup 7;: ‘;b) where JC'sup (7;3 Qb) = WmElIléd a Z ¢ (WETG’L’ (mj) "yj)
T T5
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Diversity and Consistency

Definition 1 (Diversity and Consistency (Informal))

Consider the latent feature space of target task data and finetuning task
data. Diversity refer to the coverage of the finetuning tasks on the
target task in the latent feature space. Consistency refer to similarity in
the feature space.

76 a1 1]alo]o]| ... 0 (
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Main Result

® Suppose target taskis 7

o Let ¢ € @ denote the model with the lowest target task loss Lsup (70, ™)

e We want to bound 8((;,‘)) — Sup (76;,(5) sup (76;65 )

et )

e Pretraining loss as Epm (qb)

Theorem (Multitask finetuning loss (Informal))
Suppose in pretraining we have empirical pretraining loss £,.. (¢) < e
The error will be £(¢) < O(eo). After sufficient multitask finetuning and
get qb", the error will be £(¢') < O(aey)With high probability. The
finetuning sample complexity will be ¢ (i) :

0
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Practical solution: Task selection

33



Practical solution: Task selection

Algorithm 1 Consistency-Diversity Task Selection

Input: Target task 7y, candidate finetuning tasks: {71, 72, ..., 7a }, model ¢, threshold p.
1: Compute ¢(7;) and 1, fori =0,1,..., M.
2: Sort 7;’s in descending order of similarity (7o, 7;). Denote the sorted list as {77, 73, ..., T1s}-
3: L+ {7/}

4: for:=2,...,M do

5

6

If coverage(L U T;'; To) > (1 + p) - coverage(L; Tp), then L < L U T; otherwise, break.
: end for
Output: selected data L for multitask finetuning.
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Experiments: Few-shot Vision tasks

Training

gy e e sasReeEes Train dataset #1: “cat-bird”

Figure 1: Matching Networks architecture

dogs

Testing

»
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Experiments: Verification of Theoretical Analysis

81.0
Total sample size M*m 80 _____#_——d. 80 ' |
80.5 Y A— A A— 4
. ;g: lr"’!!:/ ol A 1./‘ A
80.0 o— ~ 40k 1 A rel .
e — —y— — / — /f’
S795 o < 2 /
— —_ 1 —_— A // i A
579.0 §?5 275|" /
§ 78.5 E E A
A A— A [ ¥ !
< 78.0| A < / Samples per task (m) << ‘/ X« Number of tasks (M)
—— 150 —— 200
??5 ’ _’ __’_ ‘ ?D i 300 _fﬂ ) 400
77.0 ~— 450 w— 600
1 — 600 A —— 800
76.5 1 2 3 4 200 4DD EDD 800 150 300 450 600
Number of shot samples per task Number of tasks (M) Samples per task (m)
(a) # shots during finetuning. (b) # tasks during finetuning. (c) # samples during finetuning.

Figure 3: Results on ViT-B backbone pretrained by MoCo v3. (a) Accuracy v.s. number of shots per finetuning
task. Different curves correspond to different total numbers of samples M m. (b) Accuracy v.s. the number of
tasks M. Different curves correspond to different numbers of samples per task m. (c) Accuracy v.s. number of
samples per task m. Different curves correspond to different numbers of tasks M.
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Experiments: Task selection algorithm

Pretrained Selection INet Omglot Acraft CUB QDraw Fungi Flower Sign COCO

CLIP Random 56.29  65.45 31.31 5922 36.74 31.03 75.17 3321 30.16
NoCon. 60.89 72.18 31.50 66.73  40.68 35.17 81.03 37.67 34.28
NoDiv. 56.85  73.02 3253 6533 4099 33.10 8054 3476 31.24
Selected 60.89  74.33 3312 69.07 4144 3671 80.28 38.08 34.52

DINOv2 Random 83.05  62.05 36.75 9375 3940  52.68 98.57 3154 47.35
NoCon. 83.21 76.05 36.32 9396 50.76  53.01 9858 3422 47.11
No Div. 82.82  79.23 36.33 9396  55.18 5298 98.59 35.67 44.89
Selected 83.21  81.74 37.01 94.10 5539 5337 98.65 3646 48.08

MoCo v3 Random 59.66  60.72 18.57 3980 4039 3279 5842 3338 32.98
NoCon. 5980  60.79 18.75 4041 4098 3280 5955 3401 3341
NoDiv. 59.57 63.00 18.65 4036 41.04 3280 58.67 3403 33.67
Selected 59.80  63.17 18.80 40.74 4149 33.02 359.64 3431 33.86

Table 1: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone. No Con.:
Ignore consistency. No Div.: Ignore diversity. Random: Ignore both consistency and diversity.
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Multitask Finetuning for Adaptation

Developed a targeted adaptation framework that:
1. Identifies and selects relevant data matching target task characteristics
2. Designs specialized multitask finetuning pipeline

3. Achieves strong performance with limited target data
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Reasoning Abilities

In-context Learning




In-Context Learning (ICL)

Circulation revenue has increased by 5%
in Finland. // Positive

Panostaja did not disclose the purchase
price. // Neutral

Paying off the national debt will be
extremely painful. // Negative

The company anticipated its operating
profit to improve. //

N |

Positive

Circulation revenue has increased by
5% in Finland. // Finance

They defeated ... in the NFC
Championship Game. // Sports

Apple ... development of in-house
chips. // Tech

The company anticipated its operating
profit to improve. //

_IM_Hi

Finance

Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning,

2022.
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Motivation

Simple tasks Composite task

Just give me output.
input: * apple :
output: APPLE input: * toe

input: * bird output: TOE

Just give me output.

input: (farm frog )

Just give me output. output: frog farm

input: ( ball book ) input: ( * pie * sports )
output: book ball
input: ( house hat)

output: hat house @

output: sports * pie *

45



A Failure Case for Composition

Composite Composite in-context
Prompt input: * apple imput: ( * good * zebra )

output: APPLE output: ZEBRA GOOD

input: ( farm frog ) imput: ( * bicycle * add )

output: frog farm
input: ( * bell * ford )

Truth output: FORD BELL output: ADD BICYCLE

46



Acc

Failure Case for LLM
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Design Experiments to investigate

1. How do LLMs perform in various tasks?
2. Does scaling up the model help in general?

3. Is the variability in performance relevant to the nature of tasks?
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Simple Logical Tasks

Tasks Task Input Output

Words (A) Capitalization apple APPLE
(B) Swap bell ford ford bell
(C) Two Sum twenty @ eleven thirty-one
(D) Past Tense pay paid
(E) Opposite Above Below

Numerical (F) Plus One 435 436

(G) Modular 15@6 3
(H) Two Sum Plus One 12#5 18

49



Compositional Logical Tasks

Tasks Simple Task Simple Task Composite

(A) + (B) input: *apple input: (farm frog) input: (* bell * ford )
output: APPLE  output: frog farm output: FORD BELL

(A) + (C) input: *(five)  input: twenty @ eleven input: * ( thirty-seven @ sixteen )
output: FIVE output: thirty-one output: FIFTY-THREE

(G) + (H) input:15@6 input: 12 #5 input: 8#9 @7
output: 3 output: 18 Ouput: 4

(A) + (F) input: 435 input: cow input: 684 cat
output: 436 output: COW output: 685 CAT

50
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Compositional Ability

Definition1 (Compositional Ability)
Consider a composite tasks combines two simple tasks (A) and (B).
Consider each simple tasks contains samples .

Given a composite test prompt, we say model has compositional ability on
composite task (A) + (B) if model has higher accuracy using in-context
examples from both (A) and (B) than from either single one.
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Compositional ability under confined support (Informal)

Theorem (Compositional ability under confined support (Informal))

Consider input embedding x € R%f each simple tasks. Consider each
simple has a disjoint subset of indices from 1,2,...,.&ach simple task
only has large values within its corresponding subsets of dimensions of input

embeddings. Then with high probability, the model has the compositional
ability.
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t-SNE Visualization of Layer 32
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Principal Component 2
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PCA Visualization of Layer 32
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ICL for compositional

Our findings on compositional ability in LLMs reveal:

1. Simple composition (distinct mappings on different inputs): Models perform
well and benefit from scaling

2. Complex composition (multi-step reasoning): Models struggle, with limited

gains from scaling
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0

Adaptive Inference in Multimodal LLMS (preiiminary work

Current MLLMs lack adaptability to meet varying latency constraints in resource-
limited environments.

Prior approaches for MLLM efficiency provide static efficiency improvement:

e Compress models to fixed smaller size
e Use predetermined token selection strategies
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Adaptive Inference in Multimodal LLMS (ereliminary work)

What is the image showing?

(LaVA

The image shows a snowman holding

a colorful egg. BAELORS

AdalLaVA

The image is showing a painting or
drawing of a snowy winter scene.

75% latency budget

The image shows a snowman holding
a colorful ball.

100% latency budget

The image shows a snowman holding
Input image a colorful egg.

4 TFLOPs

6 TFLOPs

8 TFLOPs
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Adaptive Inference in Multimodal LLMS (ereliminary work)

Text response

Adaptive transformer layer
components

Attention head
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Adaptive Inference in Multimodal LLMS (ereliminary work)
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Discussions

Additional Works




Scale Effects in In-Context Learning
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Proposed Works

Efficient Architecture-Guided LLM inference




Efficient LLM Inference

Computation-level optimization:

text Text-only computation
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Zeliang Zhang et al. Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

69



Investigations on Architecture
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Gabriel llharco. Editing Models with Task Arithmetic. ICLR 2023

Mor Geva. Transformer Feed-Forward Layers Build Predictions by
Promoting Concepts in the Vocabulary Space. EMNLP 2022
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Motivations

1. Our prior work showed promise in adaptive inference of MLLMs
2. Recent mechanistic interpretability findings reveal key architectural

components for different tasks

Can we combine them and develop training-free algorithms for component

selection, specialized for different tasks?
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Efficient LLM Inference

1. Token-Level Optimization
a. Develop dynamic token selection strategies based on input
2. Mechanistically-Guided Component Selection
a. ldentify crucial model components (attention heads) and patterns using
interpretability insights
3. Task-specific Patch

a. Develop training-free algorithms for component selection
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Expected Outcome

1. New algorithms for interpretability-guided model inference

2. Improved understanding of architectural components in reasoning

3. Significant efficiency gains for specific tasks
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