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Foundation Models

Figures from: On the opportunities and risks of foundation models, 2021.
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Evolution of Foundation Models

The history and evolution of foundation models
Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.
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Pretrained FMs are generalists:
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There are gaps between these general models and 

specialized tasks.



Same task, different data
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New tasks require reasoning
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• 56 + 33 -> 89
• 67 -> sixty-seven
• …

• 31 + 25 -> fifty-six (?) 



Tasks with resource constrain

9

GB200 NVL721 Specs
https://www.nvidia.com/en-us/data-center/gb200-nvl72/



Adaptation to new tasks: 
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My Work

Foundation models (FMs) are trained as generalists, my research:

1. Enables FMs to better specialize in tasks in different domains

2. Advances FMs’ ability to handle complex problems by combining simple tasks

3. Make FMs more deployable by reducing computational overhead
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Few-Shot Adaptation

Multitask Finetuning
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New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning          pre-training + adaptation
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New Paradigm: Pre-trained Representations
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Paradigm shift: supervised learning          pre-training + adaptation



New Paradigm: Pre-trained Representations

Adaptation of a pre-trained image encoder
Figures from: Matching Networks for One Shot Learning, 2017. 18



What does pre-training look like?

● Supervised learning

● Self-supervised learning: 

○ Next sentence prediction (BERT)

○ Masked language prediction (BERT, RoBERTa)

○ Auto-regressive language modeling (GPT, Llama)

○ Contrastive learning (SimCLR, SimCSE, CLIP, DINO)
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Image Data Augmentation
Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Contrastive Learning

SimCLR - (Image, Image)
No need labels

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020
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Universality
Figures from: On the opportunities and risks of foundation models, 2021.

Label Efficiency
Figures from: https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang, 2020
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https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang


Paradigm: Pre-training + Adaptation
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Q: Can we improve this?
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Pre-training + Finetuning +  Adaptation
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An example of 4-shot 2-class image classification
Figures from: Meta-Learning: Learning to Learn Fast, 2018.
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https://lilianweng.github.io/posts/2018-11-30-meta-learning/


Problem Setup - Hidden representation data model

x

● Class                  over distribution

● Task ,   sample

● hypothesis class of representation functions, e.g. ResNet, ViT

● as  prediction logits of latent class

y ɸ(x) g(x)

Dog

loss

25



Problem Setup - Objective for a downstream task

● Class                 over distribution

● Task , instance

● as  prediction logits of latent class

● Supervised loss w.r.t a task:

xy ɸ(x) g(x) loss

y1

y2
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Pretraining - Contrastive learning

xy

xy+ +

xy- -

Data Model
Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023

positive pair negative pair

●

● Contrastive loss:

27



Pretraining - Supervised learning

xy

●

● supervised  loss: 

● In particular: will recover the logistic loss

To simplify notation, we will use                , we denote pretrained model as  
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Problem Setup - Multitask Finetuning

● Suppose we construct M tasks

● Suppose each task with m sample

● Given pretrained     . We further multitask finetune it by objective:

y1
y2

y3
y1

y3

y1
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Diversity and Consistency

● Suppose target task is 

Definition 1 (Diversity and Consistency (Informal))
Consider the latent feature space of target task data and finetuning task 
data. Diversity refer to the coverage of the finetuning tasks on the 
target task in the latent feature space. Consistency refer to similarity in 
the feature space.
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Main Result

● Suppose target task is 

● Let                      denote the model with the lowest target task loss

● We want to bound

● Pretraining loss as               

Theorem (Multitask finetuning loss (Informal))
Suppose in pretraining we have empirical pretraining loss
The error will be                       . After sufficient multitask finetuning and 
get      , the error will be                             with high probability. The 
finetuning sample complexity will be               .  
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Practical solution: Task selection
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Practical solution: Task selection
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Experiments: Few-shot Vision tasks
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Experiments: Verification of Theoretical Analysis
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Experiments: Task selection algorithm
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Multitask Finetuning for Adaptation

Developed a targeted adaptation framework that:

1. Identifies and selects relevant data matching target task characteristics

2. Designs specialized multitask finetuning pipeline

3. Achieves strong performance with limited target data
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Reasoning Abilities

In-context Learning
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In-Context Learning (ICL)

Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning, 
2022.
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Motivation
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Just give me output.
input: * apple
output: APPLE
input: * bird

output: BIRD

Just give me output.
input: ( ball book )
output: book ball
input: ( house hat )

output: hat house

Just give me output.

input: * toe

output: TOE

input: ( farm frog )

output: frog farm

input: ( * pie * sports ) 

output: sports * pie *

Simple tasks Composite task



A Failure Case for Composition
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Failure Case for LLM
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Design Experiments to investigate

1. How do LLMs perform in various tasks?

2. Does scaling up the model help in general?

3. Is the variability in performance relevant to the nature of tasks?
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Simple Logical Tasks

49



Compositional Logical Tasks
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(A) + (C) 

(G) + (H) 

(A) + (F) 



Compositional Ability

● Suppose target task is 

Definition1 (Compositional Ability)
Consider a composite tasks combines two simple tasks (A) and (B). 
Consider each simple tasks contains samples . 

Given a composite test prompt, we say model has compositional ability on 
composite task (A) + (B) if model has higher accuracy using in-context 
examples from both (A) and (B) than from either single one.
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Compositional ability under confined support (Informal)

Theorem (Compositional ability under confined support (Informal))

Consider input embedding                    of each simple tasks. Consider each 
simple has a disjoint subset of indices from                           . Each simple task 
only has large values within its corresponding subsets of dimensions of input 
embeddings. Then with high probability, the model has the compositional 
ability.
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ICL for compositional

Our findings on compositional ability in LLMs reveal:

1. Simple composition (distinct mappings on different inputs): Models perform 

well and benefit from scaling

2. Complex composition (multi-step reasoning): Models struggle, with limited 

gains from scaling
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Adaptive Inference in Multimodal LLMs (Preliminary work)
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Current MLLMs lack adaptability to meet varying latency constraints in resource-

limited environments.

Prior approaches for MLLM efficiency provide static efficiency improvement:

• Compress models to fixed smaller size

• Use predetermined token selection strategies



Adaptive Inference in Multimodal LLMs (Preliminary work)
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Adaptive Inference in Multimodal LLMs (Preliminary work)
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Adaptive Inference in Multimodal LLMs (Preliminary work)
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Discussions

Additional Works
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Scale Effects in In-Context Learning

Zhenmei Shi, Junyi Wei, Zhuoyan Xu, and Yingyu Liang. Why larger language models do in-context learning differently? ICML, 2024.
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OOD Generalization Through Induction Heads

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a lens through induction heads in transformers.
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Proposed Works

Efficient Architecture-Guided LLM inference

68



Efficient LLM Inference
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Zeliang Zhang et al. Treat Visual Tokens as Text? But Your MLLM Only Needs Fewer Efforts to See

Computation-level optimization:



Investigations on Architecture

70

Mor Geva. Transformer Feed-Forward Layers Build Predictions by 
Promoting Concepts in the Vocabulary Space. EMNLP 2022

Gabriel Ilharco. Editing Models with Task Arithmetic. ICLR 2023



Motivations
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1. Our prior work showed promise in adaptive inference of MLLMs

2. Recent mechanistic interpretability findings reveal key architectural 

components for different tasks

Can we combine them and develop training-free algorithms for component 

selection, specialized for different tasks?



Efficient LLM Inference

72

1. Token-Level Optimization

a. Develop dynamic token selection strategies based on input

2. Mechanistically-Guided Component Selection

a. Identify crucial model components (attention heads) and patterns using 

interpretability insights

3. Task-specific Patch

a. Develop training-free algorithms for component selection



Expected Outcome
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1. New algorithms for interpretability-guided model inference

2. Improved understanding of architectural components in reasoning

3. Significant efficiency gains for specific tasks



Timeline
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