
Introduction to Big Data

Zhuoyan Xu

University of Wisconsin-Madison

zxu444@wisc.edu

Feb 6,2020

Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 1 / 93



Overview

Outline

1 Overview

2 Basic Terminology

3 Deep learning

4 Optimization

5 Convolutional Neural Network(CNN)

Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 2 / 93



Overview

Big Data

Figure: https://www.analyticsinsight.net/10-parameters-for-big-data
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Overview

What is Big Data?

Figure: source:https://dlpng.com/png/5446068
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Overview

Machine Learning

Figure: en.wikipedia.org/wiki/
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Overview

Machine Learning

“Machine learning is the field of study that gives computers the ability to
learn without being explicitly programmed”

— Arthur L. Samuel, AI pioneer, 1959
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Overview

Traditional way

Figure: https://github.com/rasbt/stat479-machine-learning-fs18

e.g.

Body Mass Index (BMI) ==
mass kg

height 2
m

=
mass lb

height 2
in

× 703
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Overview

Machine Learning

Figure: https://github.com/rasbt/stat479-machine-learning-fs18

Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 8 / 93



Overview

Applications of Machine Learning

Email spam detection

Face recognition

Self-driving cars

Language translation

Recommendation system
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Overview

Categories of Machine Learning

Figure:
https://www.wordstream.com/blog/ws/2017/07/28/machine-learning
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Basic Terminology

Probability

Definition
A numerical description of how likely an event is to occur.
Example

Flipping a fair coin with the head up.

Rolling a dice and get three points up.

(a) Head of coin (b) Dice

Figure: e.g.
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Basic Terminology

Random Variable

Definition
A variable whose values depend on outcomes of a random phenomenon.

Figure: https://www.mathsisfun.com/data/random-variables.html
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Basic Terminology

Probability distribution

Definition
A mathematical function that provides the probabilities of occurrence of
different possible outcomes in an experiment.

(a) Head of coin (b) Dice

Figure: e.g.
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Basic Terminology

Expectation

Definition
The expected value of a discrete random variable is the
probability-weighted average of all its possible values.
Example
Die-rolling game: $30 for once

Rolled number award ($)

1 0

2 0

3 0

4 0

5 40

6 80
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Basic Terminology

Estimator

Definition
A rule for calculating an estimate of a given quantity based on observed
data.
Example
Q: What is mean depth of lakes in Wisconsin?

Random guessing: 100m.

Sample 100 lakes randomly from Wisconsin, take the sample mean as
the estimator.
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Basic Terminology

Linear Regression

Model Idea

Consider the model of Y conditional on X = x.

Predict response (y) based on predictors (x).

Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 17 / 93



Basic Terminology

Linear Regression

Model

yi = f (xi ) = β0 + β1xi + εi , εi ∼ i .i .d .N
(
0, σ2

)
Prediction

ynew = β0 + β1xnew
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Basic Terminology

Lost function

Residual sum of squares / Sum of Square error (SSE)
Let ŷi = f (x̂i ) = β0 + β1x̂i

SSE =
n∑

i=1

(yi − ŷi )
2

Figure: JMP.com
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Basic Terminology

Ordinary Least Squared Estimator (OLSE)

LSE
Estimator of parameter β0, β1 that minimize SSE.

β̂1 =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)∑n
i=1

(
Xi − X̄

)2

β̂0 =
1

n

(
n∑

i=1

Yi − β̂1

n∑
i=1

xi

)
= Ȳ − β̂1X̄
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Basic Terminology

Bias and Variance general definition

Bias
The bias of an estimator is the difference between this estimators
expectation and the true value of the parameter being estimated.

Bias(θ̂) = E [θ̂]− θ

Variance
Informally, it measures how far a set of (random) numbers are spread out
from their average value.

Var(θ̂) = E
[
(E [θ̂]− θ̂)2

]
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Basic Terminology

Overfitting and underfitting

Figure: https://github.com/rasbt/stat479-machine-learning-fs18
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Basic Terminology

Overfitting and underfitting

Figure: train data
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Basic Terminology

Overfitting and underfitting

Figure: Good fit
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Basic Terminology

Overfitting and underfitting

Figure: Underfitting; High bias
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Basic Terminology

Overfitting and underfitting

Figure: Overfitting; High variance
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Deep learning
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Deep learning

Neural Network

Figure: Neural Network
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Deep learning

Perceptron

Inspired by Biological Brains and Neurons

Figure: Biological Neuron
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Deep learning

Perceptron

Inspired by Biological Brains and Neurons

Figure: Biological Neuron
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Deep learning

Perceptron

Terminology

Net input = weighted inputs.
Activations = activation function(net input).
Label output = threshold(activations of last layer).

Figure
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Deep learning

Perceptron Output

ŷ =

{
0, z − θ ≤ 0
1, z − θ > 0

We call −θ bias.
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Deep learning

Geometric Intuition

Figure: Single Layer Neural Network

ŷ =

{
0,wTx ≤ 0
1,wTx > 0
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Deep learning

Single Layer Neural network

Figure: Single Layer Neural Network
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Deep learning

Activation function

FigureZhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 35 / 93



Deep learning

Fully connected layer

Figure: FC layer
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Deep learning

Neural Network

Figure: Neural Network
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Deep learning

Why Neural Network can approximate any continunous
function?

Universal approximation theorem
a feed-forward network with a single hidden layer containing a finite
number of neurons can approximate continuous functions on compact
subsets of Rn, under mild assumptions on the activation function.
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Deep learning

Why sometimes we need deeper architectures?

According to universal approximation theorem, we can put one layer and
many nodes in the one hidden layer, the neural network can fit any
function.
Why sometimes we need more than one hidden layers?
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Deep learning

Breadth and depth

Can achieve the same expressiveness with more layers but fewer
parameters ; fewer parameters =⇒ less overfitting.

having more layers provides some form of regularization: later layers
are constrained on the behavior of earlier layers; regularization =⇒
less overfitting.

However, more layers =⇒ vanishing/exploding gradients.
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Deep learning

Forward propagation

Figure
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Deep learning

Back propagation

Figure
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Deep learning

Train a neural network

We want to find a model (neural net) that performs the best in some
sense. A general way is minimizing the loss.
Loss:

Squared error loss ((y − ŷ)2).

Kullback Leibler divergence (KL divergence), known as cross entropy
in classification problem.

Unfortunately, there is no closed form solution of weights for NN
model.
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Optimization

Consider a object function

L(β) =
n∑

i=1

(yi − β0 − β1xi )
2

Goal:
find β0, β1 such that min L(β).
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Optimization

Why not just try out?

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6760390
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Optimization

Why not calculate directly?

Figure
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Optimization

Gradient Descent

Recap:
Derivative = ”slope”

f ′(x) =
df

dx
= lim

∆x→0

f (x + ∆x)− f (x)

∆x
tangent secant

Figure
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Optimization

Learning rate/stepsize

Learning rate determine how much we update at each step:

Figure: https://github.com/rasbt/stat479-deep-learning-ss19

Wk+1 = Wk − η∇L(W )

where η is learning rate.
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Optimization

Learning rate

Choose learning rate:

Figure: https://github.com/Dumplings-whu/stat479-deep-learning-ss19
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Optimization

Stochastic gradient descent

Batch gradient descent: Update parameter after algorithm evaluating all
the train sample.
SGD : Update parameter after algorithm evaluating one train sample.
Advantage:

Some randomness to avoid the local minimum.

Computation efficiency.

Some thing between these two:Mini-batch gradient descent.
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Optimization

Intuition

(a) Batch gradient descent (b) Stochatic gradient descent

Figure: e.g.
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Optimization

Paradigm

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Optimization

Regularization

Goal: reduce overfitting
usually achieved by reducing model capacity and/or reduction of the
variance of the predictions (as explained last lecture)
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Optimization

How to deal with overfitting?

Collecting more data.

If not possible, data augmentation is also helpful (e.g., for images:
random rotation, crop, translation ...) – actually, this is always
recommended (and easy to do).

Additionally, reducing the model capacity (e.g., regularization) helps.
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Optimization

Overfitting vs capacity

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 55 / 93



Optimization

Early stopping

1 Split your dataset into 3 parts: train set; validation set; test set
(always recommended).

use test set only once at the end (for unbiased test of generalization
performance).
use validation accuracy for parameter tuning.

2 Early stopping: reduce overfitting by observing the training/validation
accuracy gap during training and then stop at the ”right” point.
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Optimization

Dropout

Original research articles:

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R. (2012). Improving neural networks by preventing co-adaptation of
feature detectors. arXiv preprint arXiv:1207.0580.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958.
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Optimization

Dropout

Figure: https://github.com/rasbt/stat479-deep-learning-ss19
Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 58 / 93



Optimization

Some techniques in optimization

Figure: https://github.com/rasbt/stat479-deep-learning-ss19

Gradient is noiser:

good: chance to escape local minimum.

bad: can lead to extensive oscillation.
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Optimization

Learning rate decay

To dampen oscillations towards the end of the training, we can decay the
learning rate:

ηt :=η0 · e−k·t

ηt :=ηt−1/2

ηt :=
η0

1 + k · t
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Optimization

Momentum method

Helps with dampening oscillations, also helps with escaping local minima
traps

∆wi ,j(t + 1) :=α ·∆wi ,j(t) + η · ∂L
∂wi ,j

(t)

wi ,j(t + 1) :=wi ,j(t)−∆wi ,j(t + 1)

reference paper: Nesterov, Y. (1983). A method for unconstrained convex
minimization problem with the rate of convergence o(1/k2). Doklady
ANSSSR (translated as Soviet.Math.Docl.), vol. 269, pp. 543– 547.
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Optimization

Adaptive Learning Rates

decrease learning if the gradient changes its direction

increase learning if the gradient stays consistent.

reference paper: Igel, Christian, and Michael Hüsken. ”Improving the
Rprop learning algorithm.” Proceedings of the Second International
ICSC Symposium on Neural Computation (NC 2000). Vol. 2000.
ICSC Academic Press, 2000.
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Optimization

ADAM

Combination of momentum method and adaptive Learning Rates.
reference paper: Kingma, D. P., Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

ADAM (Adaptive Moment Estimation) is probably the most widely
used optimization algorithm in DL as of today.

https://bl.ocks.org/EmilienDupont/aaf429be5705b219aaaf8d691e27ca87
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Convolutional Neural Network(CNN)

1 Overview
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Convolutional Neural Network(CNN)

Convolutional Neural Network

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Convolutional Neural Network

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Convolutional Neural Network

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Overview of CNN

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196

Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 67 / 93



Convolutional Neural Network(CNN)

Overview of CNN

Figure: https://github.com/rasbt/stat479-deep-learning-ss19
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Convolutional Neural Network(CNN)

Applications of CNN

Figure: Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look
once: Unified, real-time object detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (pp. 779-788).
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Convolutional Neural Network(CNN)

Applications of CNN

Figure: He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. ”Mask
R-CNN.” In Proceedings of the IEEE International bigger gains under stricter
localization metrics. Second, we Conference on Computer Vision, pp. 2961-2969.
2017
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Convolutional Neural Network(CNN)

Pixels in Image

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pixels in Image

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pixels in Image

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pixels in Image

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Why Image Classification is Hard

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 75 / 93



Convolutional Neural Network(CNN)

detect feature

Figure
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Convolutional Neural Network(CNN)

Convolution

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196

feature detector/filter/kernel feature map
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Convolutional Neural Network(CNN)

Convolution

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196

feature detector/filter/kernel feature map
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Convolutional Neural Network(CNN)

Convolution

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196

feature detector/filter/kernel feature map

Zhuoyan Xu (UW-Madison) Intro to Big Data Feb 6,2020 79 / 93



Convolutional Neural Network(CNN)

Convolution

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196

feature detector/filter/kernel feature map
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Convolutional Neural Network(CNN)

Convolution layer

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pooling layer

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pooling layer

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pooling layer

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pooling layer

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Pooling layer

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

flattening/fully connection

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

flattening/fully connection

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

whole view

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

Whole view

Figure: https://www.udemy.com/course/machinelearning/learn/lecture/6683196
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Convolutional Neural Network(CNN)

small example

Figure: https://www.cs.ryerson.ca/ aharley/vis/conv/flat.html
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Convolutional Neural Network(CNN)

AlexNet: Milestone for CNN

Figure: Krizhevsky, Alex, Ilya Sutskever, & Geoffrey E. Hinton. ”Imagenet
classification with deep convolutional neural networks.” Advances in neural
information processing systems. 2012.
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Convolutional Neural Network(CNN)

Common architecture

Figure
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