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Abstract

Multimodal Large Language Models (MLLMs) have shown
impressive capabilities in reasoning, yet come with sub-
stantial computational cost, limiting their deployment in
resource-constraint environments. Despite some recent ef-
forts on improving the efficiency of MLLMSs, prior solutions
vield models with static accuracy and latency footprint,
and thus fall short in responding to varying runtime con-
ditions, in particular changing resource availability (e.g.,
contention due to the execution of other programs on the
device). To bridge this gap, we introduce AdalLLaVA—
an adaptive inference framework that learns to dynamically
reconfigure operations in an MLLM during inference, ac-
counting for the input data and a latency budget. We per-
form extensive experiments across multimodal benchmarks
involving question-answering, reasoning and hallucination.
Our results show that AdaLLaVA can adhere to input la-
tency budget and achieve varying accuracy and latency
trade-offs at runtime. Our project webpage with code re-
lease is at https://zhuoyan-xu.github.io/ada-llava/.

1. Introduction

Large language models (LLMs) [3, 43] have been recently
adapted to connect visual and text data. The resulting multi-
modal large language models (MLLMs), as exemplified by
LLaVA [33, 34] and other recent works [2, 27, 29, 35, 58,
74], have shown impressive capabilities in visual reasoning,
yet at the cost of significant computational cost. Several re-
cent efforts seek to improve the efficiency of MLLMs by
considering lightweight architectures, mixture of experts,
or token selection techniques [32, 50, 70, 74]. A common
characteristic of these methods is that they yield models
with static accuracy and latency footprint during inference.

We argue that MLLMs with fixed computational foot-
print are insufficient for real-world deployment. Consider
the example of deploying an MLLM on a server farm. Dif-
ferent requests may have distinct latency requirements, e.g.,
requests from a mobile application, which requires instant
feedback to an user vs. those from a recommendation sys-
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Figure 1. Given an image-query pair and latency constraints,
AdalLLaVA learns to generate appropriate responses while adapt-
ing to varying computational budgets.

tem, which performs updates less frequently and thus can
tolerate a higher latency. Further, the available computing
resources may vary at any given point in time, as the over-
all loads of the system fluctuate. Similarly, when deployed
on an edge device, the latency budget often remains con-
stant, yet the computing resources may vary due to con-
tention produced by other concurrent on-device programs.

Different from prior approaches, we propose to address
latency-aware adaptive inference for MLLMs, aiming to dy-
namically adjust a model’s computational load based on in-
put content and a specified latency budget. This problem is
of both conceptual interest and practical significance. Our
key insight is that a modern MLLM can be conceptualized
as a collection of shallower models, and choosing among
these models allows for dynamic reconfiguration during in-
ference. For example, prior works have shown that Trans-
former blocks in an LLM and some attention heads within
these blocks can be bypassed with minor impact on accu-
racy [0, 8, 56] and reduced latency. Thus, strategically
selecting these operations during inference leads to a set
of models with shared parameters but distinct accuracy-
latency tradeoffs, thereby enabling the MLLM to flexibly
respond to varying latency budgets.

To this end, we present AdaLLaVA, a learning based
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framework for adaptive inference in MLLMs. As shown
in Fig. 1, given an input image, a text query and a la-
tency budget, AdaLLLaVA enables an MLLM to answer
the query about the image while adhering to the latency
budget— a capability unattainable with the base MLLM.
Key to AdalLLaVA lies in a learned scheduler that dynami-
cally generates an execution plan, selecting a subset of op-
erations within the MLLM based on the input content and
a specified latency budget. This execution plan ensures that
inference is performed within the given latency constraint
while maximizing expected accuracy. To enable effective
learning of the scheduler, we introduce a probabilistic for-
mulation in tandem with a dedicated sampling strategy to
account for latency constraints at training time.

To evaluate AdalLLaVA, We conduct extensive exper-
iments. Our results demonstrate that AdaLLaVA can
achieve a range of accuracy-latency tradeoffs at runtime.
AdalLLaVA maintains comparable performance to base
MLLMs across several benchmarks while operating with
higher efficiency. Further, AdalLLaVA exhibits strong
adaptability to different latency budgets, effectively trad-
ing accuracy for speed during inference, particularly in ex-
tremely latency-constrained settings. Importantly, in all
cases, AdaLLaVA adheres to latency budgets. Additionally,
Adal.LaVA can be further integrated with token selection
techniques to further enhance efficiency, and shows content-
aware adaptation by generating execution solutions catered
for specific input samples.

Our key contributions are three folds.

* We present AdalLL.aVA, a novel adaptive inference frame-
work for MLLM. Our method for the first time enables
dynamic execution of MLLMs based on a latency budget
and the input content at inference time.

* Our key technical innovation lies in (1) the design of
a latency-aware scheduler, which reconfigures a base
MLLM model during inference; and (2) a probabilistic
modeling approach, which allows for the incorporation
of hard latency constraints during MLLM training.

* Through extensive experiments, we demonstrate that
AdalLLaVA can adapt to a range of latency requirements
while preserving the performance of the base model, and
that AdaLLaVA can be integrated with token selection
techniques to further enhance efficiency.

2. Related Work

Multimodal Large Language Models (MLLMs). With
the success of LLMs, increasing research focus on extends
LLMs from pure text modality to other modalities such as
image [34], video [27], and audio [26]. Such development
leads to the emergence of MLLMs, often involving com-
bining vision encoders with existing LLMs. Flamingo [2]
inserts gated cross-attention dense blocks between vision

encoder and LLMs, align vision and language modality.
BLIP2 [29] introduce Q-former with two-stage pretraining,
bridge frozen image encoders and LLMs to enable visual
instruction capability. LLaVA [33, 34] and MiniGPT-4 [74]
use simple MLP to connect vision embedding space and text
token space and show state-of-art performance on a variety
of tasks. Our work builds on these developments and aims
to enable adaptive inference of MLLMs.

Adaptive Inference. Adaptive inference refers to the ca-
pability in which the computational complexity of mak-
ing predictions is dynamically adjusted based on the in-
put data, latency budget, or desired accuracy levels [16].
Early works focus on the selection of hand-crafted features
in multi-stage prediction pipelines [15, 24, 64]. More re-
cent works have extended these ideas to deep models. For
convolutional networks, methods have been developed to
downsample the input, skip layers or exist early during in-
ference [4, 12, 19, 23, 28, 41, 59, 63]. For vision trans-
formers, various approaches have been proposed to en-
hance efficiency, such as selecting different patches of im-
ages [45, 47, 60], and using different attention heads and
blocks [25, 40]. Similar ideas have also been explored for
LLMs, where models selectively process tokens [48] or ex-
ecute a subset of the operations [1 1, 49] during inference.

Our approach builds upon these ideas by dynamically se-
lecting a subset of model components during inference. Un-
like existing methods, our approach specifically targets the
inference of MLLMs under latency constraints, predicting
feasible execution plans tailored for each input while adher-
ing to varying budget budgets.

Efficient Inference for MLLMs. MLLMs face a ma-
jor challenge in deployment, due to their high computa-
tional costs during inference. Several recent works design
lightweight model architectures to reduce the costs. Exam-
ples include Phi-2 [22], Tinygpt-v [71] and LLaVA-¢ [75].
Vary-toy [62] enhanced performance through specialized
vision vocabulary in smaller models. TinyLLaVA [73]
and LLaVA-OneVision [27] learn small-scale models with
better training data and pipeline. = MoE-LLaVA [32]
and LLaVA-MoD [53] improve efficiency by incorporat-
ing mixture-of-experts architectures and parameter sparsity
techniques. Another line of research investigates the selec-
tion of input tokens to improve efficiency. An input image
or video can lead to a large number of vision tokens. To
address this, MADTP [7] and LLaVA-PruMerge [50] intro-
duce token pruning and merging technique to reduce the
tokens counts. Pham et al. [46] propose to selectively dis-
abling attention mechanisms for visual tokens in MLLMs.
While our approach also aims to improve the efficiency
of MLLMs, it focuses dynamically adjusting an MLLM to
fit varying latency budget during inference. This makes
our approach orthogonal to prior efforts centered on de-



veloping inherently efficient MLLMs. Through our experi-
ments, we will demonstrate that our approach is compatible
with smaller models and integrates seamlessly with existing
token-pruning techniques e.g., LLaVA-PruMerge [50].

3. Adaptive Inference of MLLMs

We propose AdaLLaVA, an adaptive inference framework
for MLLMs. Given a latency budget and a multimodal sam-
ple at inference time, our framework employs a scheduler
learned from data to dynamically reconfigure the execution
of MLLMs. Importantly, the scheduler strategically selects
a subset of operations to execute, catered for the input bud-
get and content. In doing so, our approach ensures that the
inference adheres to the latency constraint while preserv-
ing model accuracy. Fig. 2 (a) provides an overview of our
framework, where our designed scheduler takes input from
both multimodal sample and latency budget and outputs an
execution plan tailored to that specific input.

In what follows, we introduce the background on
MLLMs (Sec. 3.1), outline our key idea for scheduling
MLLMs (Sec. 3.2), present our approach for training and
inference with the scheduler (Sec. 3.3), and further describe
the specifics of our solution (Sec. 3.4).

3.1. Preliminaries: MLLMs

A MLLM takes an image (or video) X" and a text query
X% = {z9} as its input, and generates an answer X =
{z®} in text format. Specifically, X" is first encoded by a
visual encoder (including the vision backbone and its pro-
jector) h,(+) into a set of visual tokens {z* € R?}. Simi-
larly, X9 is processed by a text encoder h;(-), which em-
beds words 7 into text tokens {z¢ € RY} with z7 =
h¢(27). Theses tokens are further combined into {z"7} =
[{z"}, {z?}], and processed by an LLM f(-), which de-
codes X in an autoregressive manner

£ ([t} 4z23] 1) = at, M

where {z%,} are text tokens from previously generated an-
swer 2%, i.e. z° = hy(x®), and # denotes LLM parameters.

For the rest part of the paper, we will primarily consider
the learning of LLM parameters § — the major portion of
parameters within the MLLM. Yet we note that learning en-
coder parameters (in h, (-) and h.(+)) can be done similarly.

3.2. Reconfiguring and Scheduling MLL.Ms

Dynamic reconfiguration. Our key insight is that MLLM
can be conceptualized as a collection of shallower mod-
els with shared parameters yet distinct accuracy-latency
tradeoffs, enabling dynamically reconfiguration during in-
ference. To this end, we propose to equip the LLM f(-)
with K tunable binary switches s € (0,1)%, where s de-
termines the execution of individual operations at runtime,

such as a Transformer block or an attention head. The state
of each operation will be controlled by a switch, enabling
(1) or disabling (0). We defer the choice of these operations
and the design of these switches to our model instantiation.
Here, we first focus on the key concept of LLM decoding,
which is given by

£ ([t 423 s:0) = at. @

Specifically, f(-) now takes the switches s as an addi-
tional input, and only executes a subset of operations when
generating its output. It is worth noting that the switches
s does not depend on the decoding step ¢, i.e., a fixed set
of operations are used to decode all tokens in the output,
though this set may varying across different inputs.

Scheduler. The crux of our method lies in learning a sched-
uler g(-) that controls the execution of f(-) during inference.
The scheduler g(-) predicts a configuration of the switches s
based on input tokens {z”‘q} and an inference latency bud-
get [. This is written as

g ({21} 1) = s, 3

where ¢ denotes learnable parameters of the scheduler g(+).

The goal of g(-) is to determine an execution plan that
meets the latency requirement while preserving the accu-
racy. This amounts to estimating the solution to the follow-
ing combinatorial optimization problem for each input.

min S logp (of = f ([{2""). {22,)] .5:6) )
“)
s.t. Latency (f ({{z“‘q}, {z‘él}} ,5;9)) <l

Here the objective is to minimize the negative log likelihood
of decoded text — the standard loss used for training LLMs,
and the constraint states that the latency of executing the
model must fall under the budget.

3.3. Learning to Schedule Probabilistically

Learning the scheduler g(-) presents a major challenge.
While it is tempting to pursue a fully supervised approach,
where g(-) is trained to exactly predict the solution to Eq. 4,
doing so requires solving the optimization for each sample
at every iteration. Even with a small number of switches,
this is prohibitively expensive.

Deterministic modeling. A possible solution is to solve
a relaxed version of the constrained optimization at train-
ing time. We initially explored this solution, where we let
the scheduler predict the hard execution plans on binary
switches s and attribute latency violation into part of the
objective, leading to the following loss

argmin —logp (2 = /() + MLateney(/()) ~ 13



Text response

oo

ROYLE  Transformer layers

Scheduler

Latency
v q S
z 2 z Encoder
Visual tokens Text tokens

75%

Latency budget

(a)

Adaptive transformer layer
components

[ I
Attention head

S Multi-head self-attention
execution plan
X down_proj
E E 8
MLP
(b)

Figure 2. Overview of AdaLLaVA. (a) learning based latency encoder and and scheduler. The encoder will embed latency budget into
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The control over MLP neurons can be achieved using a subset of the weight matrix.

where A\ can be considered as the Lagrangian multiplier.
Here the execution of f(-) depends on the output of the
scheduler of g(-), allowing us to jointly optimize the LLM
f(+) and the scheduler g(+).

This deterministic approach is further described in the
supplement. Empirically, we found that this method fails to
enforce a strict latency constraint on the scheduler and of-
ten produces suboptimal execution plans that exceed latency
limits or under-utilize the available resources. We demon-
strate this limitation through experimental results in Sec. 4.4
and present further discussion in our supplement.

Probabilistic modeling. To address this challenge, we pro-
pose a probabilistic model to relax the constraints, avoiding
directly solving Eq. 4 while stabilizing the joint training of
the LLM and the scheduler. The key idea is to impose a dis-
tribution over the choice of the switches s, in lieu of mak-
ing a hard decision. Specifically, we design the scheduler to
predict a probabilistic distribution
g ({217}, 1:0) ~ p (si{z"11},1.9) )

With minor abuse of the notation, p(s|{z"l9},l, #) is the
probability of triggering binary switches s given the input
{z”'q}, latency budget [, and the scheduler parameters ¢.
Ideally, p(s|{z"!9},1, #) = 0 if the execution latency exceed
the budget, and can be positive otherwise.

We now re-formulate the inference of MLLM as sam-
pling from the following hierarchical distribution.

s~ p(sl{z""}11.0).

2t ~ p(afl [{2"7) {22} 15.0) ©

We produce execution plans through such conditional sam-
pling strategy, we first let scheduler g output probability
of keep/drop each switch, approximating the distribution
p(s|{z"19},1, $), we then sample execution plans s based
on the distribution without violating the latency constraint.

In actual MLLMs inference, given an input and a la-
tency budget, we first sample an configuration plan from
the scheduler, and then execute this plan to further generate
answers from the LLM.

Training loss. This formulation allows us to directly opti-
mize the following loss function for training.

| ~logp (o] [{217). {z2.}] 1.0.0) |

argmin Ep
0,

where D is the data distribution approximated by the train-
ing set (X", X9,X% [) ~ D. By marginalizing s, we have

p(af|[{z"1}, {241,106, 9)) =
Eptitarny i (P21, (28] 5.0)]

Thus, the loss function is transformed into

argmin Ep oo |~ 10gp (w71 [{217},{22,}] .5.0)] .

where p (s|-) = p (s|{z"19}, 1, ¢).

More concretely, this loss can be computed by (1) sam-
pling an input data point and a latency budget from the train-
ing data, (2) sampling an execution plan, i.e. a configuration
of the switches, from the scheduler output, so that it sat-
isfy the latency budget (3) execute the plan and generate
the answer, and (4) evaluate standard negative log likeli-
hood of the decoded text. Optimizing this loss addition-



ally requires back propagation through the sampling pro-
cess s ~ p(s|{z"l9},1,¢), which we approximate using
the Gumbel Softmax trick [21, 39].

Adaptive inference. During inference, the scheduler out-
puts the probability p(s|{z"17},1, ¢) of choosing individual
switches s, based on the input {z”‘q} and the latency budget
l. In theory, the inference requires marginalizing this distri-
bution for decoding the answer x{ at each step. In prac-
tice, we approximate the inference by simply plugging the
best execution plan from the scheduler for every step. This
approximation bypasses the expectation term, and thus re-
mains highly efficient. We have empirically verified its ef-
fectiveness. Formally, this approximation is given by

xd = arg%x?ax Esp(s|) [— log p (xf\ [{ZWI}7 {z‘él}} ,5,9)}

i

~ argmax p (af] [{2'7), {22.}] .57.0)

a
T;

where s* = argmax, p (s[{z"!7},1,¢). Note that model
parameters 6 and ¢ are now fixed.

3.4. Model Instantiation

The design of tunable switches. We attach binary switches

to the LLM, which accounts for the majority of computa-

tional costs. We implement two distinct approaches to se-
lect operations at inference time using binary switches.

e AdaLLaVA-L (layer-level): In this design, binary
switches are attached to entire transformer blocks. When
a switch is off, the corresponding block is bypassed
through its residual connection, becoming an identity
mapping. The execution plan determines whether each
layer is computed or bypassed (see Fig. 2(a)).

e AdaLLaVA-H (head/neuron-level): This design applies
binary switches to individual components within lay-
ers, including individual attention heads within attention
modules and specific neuron activation values in MLP
layers, similar to selective dropout for these components
(see Fig. 2(b)).

To ensure stable and consistent model performance, we
fixed the first half of transformer blocks, applying dynamic
execution plans exclusively to the latter half.

Sharing parameters between the LLM and scheduler.
A key design choice is to reuse the parameters and oper-
ations from LLM f(-) for the scheduler ¢(-). Specifically,
we design a latency encoder that converts the latency budget
into a token embedding, which is then concatenated with
the original input sequence before feeding into LLM lay-
ers. The latency token’s representations are captured from
intermediate layers and passed to a lightweight scheduler,
which outputs the execution plan. Notably, the lower half
of the MLLM'’s layers serve two purposes: they simultane-
ously process regular MLLM tasks and learn latency-aware

resource allocation based on both content and budget con-
straints. This design is depicted in Fig. 2 (a).

Approximating p (s|-). To model the switch configura-
tion distribution p (s|z"!9,1, ¢) under latency constraints,
our scheduler outputs probability scores for each switch.
We employ the conditional sampling strategy: switches are
sampled one at a time without replacement until reaching
the specified latency budget. The resulting execution plan
is then implemented, and we optimize the model by mini-
mizing our loss.

Implementation details. We adopt the architecture of
LLaVA [33] and integrate the scheduler into its LLM (see
Fig. 2). Our latency encoder is implemented using sine
and cosine functions, and the scheduler is a simple linear
layer (randomly initialized) that maps the latency token to
the logits for the switches. The scheduler takes the latency
token processed by the first half of the transformer layers
and generates the execution plan for the second half. This
results in a model with latency ranging from 50% to 100%
of the original LLaVA model.

To quantify model latency, we adopt a computational
complexity-based approach, using FLOPs (floating point
operations) as our primary metric.  This provides a
hardware-agnostic measure of computational cost that di-
rectly correlates with actual runtime performance. Our
FLOPs calculation methodology mainly follows the stan-
dardized procedures established in [72].

4. Experiments and Results

We now present our experiments and results. We introdue
our setup (Sec. 4.1), present our main results (Sec. 4.2), pro-
vide further analysis for the scheduler (Sec. 4.3), and con-
duct ablation studies (Sec. 4.4).

4.1. Experimental Setup

Training details. Instead of following LLaVA’s two-stage
training procedure, we focus on jointly finetuning its LLM
and training the scheduler on visual instruction data, while
keeping the vision encoder frozen. We initialize our model
with the pretrained LLaVA-1.5 checkpoint. During finetun-
ing, each training sample is paired with a randomly gen-
erated latency requirement ranging from 0.5 to 1.0 (as we
only operate on the top half of the layers in LLM). We set
learning rate to 10~ for the LLM and 10~ for the sched-
uler, while keeping other training hyperparameters consis-
tent with the original LLaVA stage-2 finetuning protocol.

Benchmarks. We conduct comprehensive evaluations
across multiple visual understanding benchmarks, including
VQAV2 [14], ScienceQA [38], TextVQA [54], MME [13],
and MMBench [37]. We also evaluate on hallucination
benchmarks such as POPE [30]. For the TextVQA evalu-
ation, we specifically focused on the image-based subset,



Method LLM Percentage (%) FLOPs (T) ‘ VQAY? SQA! VQAT ‘ POPE MME MMB
BLIP-2 Vicuna-13B 100 - 41.0 61 42.5 853 12938 -

InstructBLIP Vicuna-7B 100 - - 60.5 50.1 - - 36

InstructBLIP Vicuna-13B 100 - - 63.1 50.7 789  1212.8 -

Shikra Vicuna-13B 100 - 774 - - - - 58.8
IDEFICS-9B LLaMA-7B 100 - 50.9 - 259 - - 48.2
IDEFICS-80B LLaMA-65B 100 - 60.0 - 30.9 - - 54.5
Qwen-VL Qwen-7B 100 - 78.8 67.1 63.8 - - 38.2
Qwen-VL-Chat Qwen-7B 100 - 78.2 68.2 61.5 - 1487.5  60.6
LLaVA-1.5 Vicuna-7B 100 9.3 78.5 66.8 58.2 859 1510.7 643
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-7B 85 8.1 77.3 68.1 53.9 86.4 15053 643
LLaVA-1.5 w/ AdaLLaVA-H Vicuna-7B 85 8.1 76.9 67.9 54.5 86.0 1502.6 62.5
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-7B 60 5.8 73.5 66.6 454 852 14902 619
LLaVA-1.5 w/ AdaLLaVA-H Vicuna-7B 60 5.8 72.1 67.0 45.6 86.6 1480.7 61.8
LLaVA-1.5 Vicuna-13B 100 18.2 80.0 71.6 61.3 859 15313 677
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-13B 85 15.9 79.1 72.6 58.1 86.1 15193 683
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-13B 60 11.3 77.1 71.9 54.7 869 1517.1 685
Prumerge Vicuna-7B 100 0.91 72.0 68.5 56.0 763 13503  60.9
Prumerge w/ AdaLLaVA-L Vicuna-7B 85 0.77 68.6 68.6 51.8 740 13757 57.6
Prumerge w/ AdaLLaVA-L Vicuna-7B 60 0.54 65.6 68.4 44.1 75.6 13515 55.6

Table 1. Results of MLLMs on six benchmarks. Our AdalLLaVA can be applied to LLaVA 1.5 with different size of LLM with different
design of switches. Percentage (%): The input latency requirement. AdaLLaVA-L: switches on selecting different transformer blocks.
AdaLLaVA-H: switches on select different attention heads and MLP activations. VQA"?: VQAv2 set. SQA": ScienceQA set. VQAT:

TextVQA set. Prumerge: LLaVA 1.5 with PruMerge.

where each question is paired with corresponding image
content. For each benchmark, we report the official metrics
on the same dataset splits as in LLaVA-1.5. In each evalua-
tion of AdaLLLaVA, the same latency requirement (from 0.5
to 1.0) is applied across all sample in the dataset.

4.2. Main Results

Setup. Following LLaVa-1.5, we consider two model
sizes, i.e., 7B and 13B. We evaluate AdalLLaVA with two
different designs: (a) AdaLLaVA-L for selecting Trans-
former blocks; and (b) AdaLLLaVA-H for selecting attention
heads and MLP activations. To demonstrate the efficacy
of AdaLLaVA, we consider two latency budgets: 60% and
85%. Additionally, we report the FLOPs during the prefill
stage for an efficiency comparison.

Results and discussion. Our main results across six bench-
marks are summarized in Table 1. AdalLLaVA frame-
work shows comparable performance while achieving ef-
ficiency improvements across multiple benchmarks. When
applied to LLaVA-1.5 with Vicuna-7B, AdaLLaVA-L main-
tains similar performance with only 85% compute require-
ment. For instance, our method achieves 64.3 on MMB,
same as full model. We found on our method surpass the
full model performance on certain benchmarks, such as Sci-
enceQA (68.1 vs 66.8), and POPE (86.4 vs 85.9). Simi-
lar results are observed with AdalLLaVA-H, which focuses
on selecting attention heads and MLP activations. Given
60% compute requirement, our AdalLLaVA-H still main-
tains strong performance comparing to full model on cer-
tain benchmarks, such as ScienceQA (67.0 vs 66.8) and

POPE (86.6 vs 85.9). The effectiveness of our approach
also scales to larger models, as demonstrated by the re-
sults with Vicuna-13B backbone. Notably, in some cases,
our method outperforms the baseline while using only 60%
computational resources, as seen in ScienceQA (71.9 vs
71.6), POPE (86.9 vs 85.9) and MMB (68.5 vs 67.7).

Integration with Token Selection Techniques. Our
method demonstrates strong compatibility with other ef-
ficiency techniques, such as token pruning method. As
shown in Tab. 1, when integrated with LLaVA-PruMerge,
AdalLLaVA maintains competitive performance across
multiple benchmarks while significantly reducing com-
putational costs. Notably, AdalLLaVA-L with PruMerge
achieves 68.6 accuracy on ScienceQA while using only
0.77T FLOPs.

Overall, these results demonstrate that AdaLlava can ef-
fectively maintain model performance while significantly
reducing computational requirements, offering a practical
solution for deploying large multimodal models under vary-
ing resource constraints.

4.3. Latency- and Content- Aware Scheduling

Latency awareness. We perform a comprehensive eval-
uation of AdaLLaVA under varying latency constraints.
We conduct extensive experiments on VQAv2 benchmark
to demonstrate the adaptive ability of our approach.

To make comprehensive comparison, we also imple-
mented a simple baseline that involves naively truncating
the original model to meet latency constraints. We remove
layers from the model with greedy manner, starting from
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Figure 3. Results on VQAv2 benchmark across latency budgets
(FLOPs). AdaLLaVA-L/H: our methods. Early Exit: Naive trun-
cation method. We denote performance of full model as a single
point.

the top, until the desired latency target is achieved. We note
this naive method as early exit.

We show our results on LLaVA 1.5 in Fig. 3a.
When varying latency requirements from 0.5 to 1.0, our
Adal.LaVA-L demonstrate smooth and consistent perfor-
mance scaling as the available computational resources
(FLOPs) increase. The curves show a clear upward trend,
validating that our scheduler can make decisions in select-
ing model components - as more computational budget be-
comes available, it progressively activates more compo-
nents, leading to better performance and eventually match-
ing full LLaVa 1.5 performance. We also notice that the
naive early exit baseline performs significantly worse than
our adaptive approach. This highlights the importance of
latency-aware model design, as the original model lacks la-
tency awareness and fail to adapt to flexible computational
constraints.

To demonstrate the versatility of AdaLLaVA, we fur-
ther integrate it with other efficient inference methods on
LLaVA, namely, PruMerge and PruMerge+ [50], which re-
duce computation by pruning majority of visual tokens.
We report results in Fig. 3b. We observe that PruMerge+

JIM CARREY

RrD 48

¥ peta
Question: What is the title of this Who is the main actor?

movie?
Answer: Yes Man

The name of the main
actor in the movie is
Jim Carrey.

What activity are they

Question: What is the name of
the main actor? doing?

The man and woman
are sitting in a boat,
likely rowing or
paddling it...

Answer: The name of the main
actor is Ryan Gosling.

Figure 4. The key-query attention scores between latency token
and visual tokens. The latency input is 1.0 in these examples.

achieves higher accuracy but at the cost of increased FLOPs.
In both case AdalLLaVA demonstrates efficient perfor-
mance scaling with computational resources, consistently
outperforming the early exit baseline. The results show that
our adaptive approach is complementary to existing effi-
ciency methods, achieving strong performance from as low
as 1.0T FLOPs to matching the accuracy of PruMerge+ at
2.5T FLOPs.

Content awareness. The design of AdalLLaVA enables ex-
ecution plans to adapt dynamically to different input con-
tent. Fig. 4 shows the key-query attention scores of the la-
tency token and the input visual tokens with different text
questions. The attention scores are taken right before the
latency token is fed into the scheduler. As shown in Fig. 4,
our scheduler demonstrates content-aware attention scores
across different queries. For the top poster, attention con-
centrates on ‘YesMan’ for the title question but shifts to the
name elements for actor identification question. Similarly,
in bottom picture, attention spreads across the scene ele-
ments when describing activities but focuses specifically on
the character for actor identification question. This shows
our model’s ability to dynamically adjust its computational
focus based on the query type.

In Fig. 5, we directly investigate the execution plans
given different input content. When processing similar
queries (e.g., asking about creators) for different artworks,
the scheduler generates distinct execution patterns, demon-



Question: Is this artwork created by ingres,
jean-auguste-dominique? Please answer
yes or no.

Answer: No.
Execution
pan: NN W W W W [ (T

FLOPs: 6.4T

Question: Is this artwork created by ingres,
jean-auguste-dominique? Please answer
yes or no.

Answer: No.
Execution
plon: I T T B O T T

FLOPs: 6.4T

Figure 5. The execution plans generated by scheduler given dif-
ferent visual input. The execution plans represents either enable
(shallow color) or disable (deep color) for the 16 to 32 layers. The
latency input is 75%.

strating its ability to allocate resources based on specific vi-
sual content. The various in attention score and execution
plans show that our scheduler learns to make decisions de-
pend on visual and text input rather than applying a fixed,
content-agnostic strategy.

4.4. Ablation Study

We now conduct ablation study, exploring different design
choices. Due to space limit, we only present results with
LLaVA 1.5-7b Model on VQAv2 dataset benchmark.

Design of the switches. We explore the performance
of design of tunable switches, namely AdalLLLaVA-L and
AdalLLaVA-H (detailed in Sec. 3.4). AdalLLaVA-L al-
lows adaptivity to latency requirements while not chang-
ing too much the well-trained LLM. On the other hand,
AdalLLaVA-H offers better flexibility to latency input
but requires significant change to the model architecture.
Fig. 6 shows the performance scaling of our two switch-
ing strategies on VQAv2. While AdaLLaVA-L achieves
slightly better accuracy across most computational bud-
gets, AdaLLLaVA-H demonstrates finer-grained control over
the accuracy-latency trade-off. This is evident from the
smoother curve of Adal.LaVa-H, which can be attributed
to its head/neuron-level switches providing more granular
control over computational resources compared to the layer-
level switches. This flexibility allows AdalLLaVa-H to ac-
commodate a wider range of latency budgets, though at a
slight cost of lower peak performance.

Probabilistic vs. deterministic modeling of latency con-
straints. We investigate two approaches to the scheduler
design: deterministic and probabilistic (see Sec. 3.3). The
deterministic scheduler directly outputs execution plans and
combines latency and language model losses. For our main
experiments, we adopt the probabilistic approach with con-
ditional sampling (detailed in Section 3.4). Here we com-

o o N ~ NN
o o o NOA~ o

VQAV2 Val Accuracy
o
B

—e— LlLaVa 1.5 w/ AdallLaVa-L
LLaVa 1.5 w/ AdalLLaVa-H

[=)]
N

(=)
o

5 6 7 8
FLOPs (T)

Figure 6. Results comparing two choices of switches.

| AdaLLaVa-L | Deterministic scheduler

Latency budget ‘ Accuracy ‘ FLOPs (T) ‘ Accuracy ‘ FLOPs (T)
0.5 | 645 | 42 | 335 | 42
0.56 | 693 | 48 | 629 | 45
0.63 | 718 | 53 | 6.1 | 50
0.69 | 74 | 58 | 702 | 53
0.75 | 741 | 63 | 724 | 60
0.81 | 748 | 69 | 754 | 82
0.88 | 750 | 74 | 755 | 85
0.94 | 754 | 79 | 757 | 85
1.0 | 762 | 85 | 750 | 85

Table 2. Results of AdaLLaVA-L and deterministic scheduler
across latency budget. Red values indicate computation violation.

pare these two modeling paradigms, evaluating their perfor-
mance across different latency constraint.

As illustrated in Table 2, AdalLLaVA-L demonstrates su-
perior adaptability across different latency budgets com-
pared to the deterministic approach. We notice determin-
istic approach has performance drop given low latency bud-
get due to under-utilization, and violates the higher latency
input. This suggests AdalLLaVA-L achieves better resource
efficiency while maintaining higher accuracy, particularly
at stricter latency constraints.

5. Conclusion

In this paper, we introduced Adal.LaVA, a novel adap-
tive inference framework designed to address the critical
challenge of deploying MLLMs in resource-constrained
environments.  Our approach features a lightweight,
learning-based scheduler and a probabilistic modeling tech-
nique. Extensive experiments across multimodal bench-
marks demonstrate the effectiveness of our framework,
producing latency- and content-aware execution plans and
achieving a range of accuracy-latency tradeoffs. Moreover,
our method is compatible with existing efficiency tech-
niques, such as token pruning, further enhancing its prac-
tical utility. We believe this work represents a step toward



making MLLMs more viable for real-world applications
where computational resources may fluctuate significantly.
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Supplementary Material

In the supplementary material, we (1) provide the full
set of results accompanying our experiments in Sec. 4
(see Sec. A); (2) provide additional quantitative results on
latency-aware Scheduling on MME dataset, and qualita-
tive results on different images (see Sec. B); (3) provide
additional attention map results on content awareness (see
Sec. C); and (4) provide further discussion of our work (see
Sec. D). We hope that this document will complement our
main paper.

A. Full Results

We report the full set of results on LLaVA 1.5, LLaVA-
PruMerge and LLaVA-PruMerge+ in Tab. 3, as a comple-
mentary to Tab. 1. All experiments follows the same set-
ting described in Sec. 4.1. These results confirm that our
AdalLLaVA framework successfully adapts to LLaVA 1.5
across different backbone sizes, and can be further com-
bined with recent token selection methods (PruMerge and
PruMerge+) to further enhance efficieny. We maintain
comparable performance while improving efficiency across
multiple benchmarks. Additionally, our analysis reveals
how performance varies under different latency constraints,
demonstrating our framework’s ability to trade between ac-
curacy and latency.

B. Additional Results on Latency-Awareness

We perform further evaluation of AdaLLLaVA under varying
latency constraints.

MME benchmark. We conduct extensive experiments on
MME benchmark to demonstrate the adaptive ability of our
approach, complementary to Sec. 4.3.

We mainly adopt LLaVA 1.5-7B with and with-
out PruMerge to show the latency awareness of our
AdalLLaVA framework, while compatible with token se-
lection techniques, effectively balances accuracy and effi-
ciency across different latency requirements.

For LLaVA 1.5 base model and PruMerge, the upward
trend in the AdaLLaVA-L results confirms our scheduler’s
effective component selection: as computational resources
increase, it activates additional components to enhance per-
formance. Notably, our AdaLLaVA-L model surpasses the
base model’s performance even at lower latency (around
1.1T FLOPs). This demonstrates our framework’s con-
tent awareness, generating customized execution plans for
different inputs under the same latency constraints - ulti-
mately outperforming the fixed full model. In contrast, the
Adal.LaVA-H variant shows less predictable patterns across

14004

~ _ ¥

-
N
o
o

1000+

MME Perception Score
[ee]
o
<

—e— PruMerge w/ AdalLaVa-L
PruMerge w/ AdalLaVa-H
PruMerge w/ Early exit

X  PruMerge

o
o
o

07 0.8 0.9 1.0 11 12 13 14
FLOPs (T)

Figure 7. Results on LLaVA 1.5-7b.
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Figure 9. Results on MME benchmark across latency budgets
(FLOPs). AdaLLaVA-L/H: our methods. We denote performance
of full model as a single point.

different latency budgets. We attribute this to the relative
simplicity of the MME benchmark compared to VQAv2 -
the model can achieve satisfactory performance even with
limited computational resources. Overall, AdaLLaVA-H
offers more flexibility in terms of latency requirements.

Model Response under different latency. Here we show
additional results on model response given same image-text
input under different latency budget, similar to Fig. 1.

As shown in Tab. 4, given an image-query pair and la-
tency constraints, AdaLLaVA learns to generate appropri-
ate responses while adapting to varying computational bud-
gets.



Table 3. Full results of AdalLLaVA across six benchmarks.

Method LLM Percentage (%) | VQA'? SQA' VQAT | POPE  MME MMB
BLIP-2 Vicuna-13B - 41.0 61 425 853 12938 -

InstructBLIP Vicuna-7B - - 60.5 50.1 - - 36

InstructBLIP Vicuna-13B - - 63.1 50.7 78.9 1212.8 -

Shikra Vicuna-13B - 77.4 - - - - 58.8
IDEFICS-9B LLaMA-7B - 50.9 - 25.9 - - 48.2
IDEFICS-80B LLaMA-65B - 60.0 - 30.9 - - 54.5
Qwen-VL Qwen-7B - 788  67.1 638 - - 38.2
Qwen-VL-Chat Qwen-7B - 782 682 615 - 1487.5  60.6
LLaVA-1.5 Vicuna-7B 100 78.5 668 582 | 859 15107 643

LLaVA-1.5 w/ AdaLLaVA-L Vicuna-7B 100
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-7B 85
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-7B 75
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-7B 60

78.4 67.7 56.6 86.5 14982 643
773 68.1 53.9 86.4 15053 643
76.0 67.4 51.1 85.6 14989  63.7
73.5 66.6 45.4 852 14902 619

LLaVA-1.5 w/ AdaLLaVA-H Vicuna-7B 100
LLaVA-1.5 w/ AdaLLaVA-H Vicuna-7B 85
LLaVA-1.5 w/ AdaLLaVA-H Vicuna-7B 75
LLaVA-1.5 w/ AdaLLaVA-H Vicuna-7B 60

77.3 68.3 55.5 85.8 14675 63.1
76.9 67.9 54.5 86.0 1502.6 625
75.0 67.5 50.6 86.0 15249 624
72.1 67.0 45.6 86.6 1480.7 61.8

Prumerge Vicuna-7B 100
Prumerge w/ AdaLLaVA-L Vicuna-7B 100
Prumerge w/ AdaLLaVA-L Vicuna-7B 85
Prumerge w/ AdaLLaVA-L Vicuna-7B 75
Prumerge w/ AdaLLaVA-L Vicuna-7B 60

72.0 68.5 56.0 76.3 13503  60.9
69.4 68.3 53.1 744 137577  56.6
68.6 68.6 51.8 74.0 13757 57.6
67.4 67.8 48.8 733 13756 563
65.6 68.4 44.1 756 13515 55.6

Prumerge w/ AdaLLaVA-H Vicuna-7B 100
Prumerge w/ AdaLLaVA-H Vicuna-7B 85

68.3 68.6 52.8 70.5 12863 574
67.7 68.2 51.3 69.2 12788 57.0

Prumerge w/ AdaLLaVA-H Vicuna-7B 75 66.0 68.4 48.7 70.5 12692  56.0
Prumerge w/ AdaLLaVA-H Vicuna-7B 60 63.7 68.0 443 72.3 12694 547
Prumerge+ Vicuna-7B 100 76.8 68.3 57.1 84.0 14624 649

Vicuna-7B 100
Vicuna-7B 85
Vicuna-7B 75

Prumerge+ w/ AdaLLaVA-L
Prumerge+ w/ AdaLLaVA-L
Prumerge+ w/ AdaLLaVA-L
Prumerge+ w/ AdaLLaVA-L  Vicuna-7B 60

75.1 68.7 539 824 14558 62.0
74.5 67.9 53.0 82.5 14723 61.6
733 67.9 50.4 80.8 1441.7 61.9
71.4 67.5 46.3 833 14592 61.8

LLaVA-1.5 Vicuna-13B 100
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-13B 100
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-13B 85
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-13B 75
LLaVA-1.5 w/ AdaLLaVA-L Vicuna-13B 60

80.0 71.6 61.3 859 15313 67.7
79.4 723 58.9 86.3 14979 68.7
79.1 72.6 58.1 86.1 15193 683
78.4 72.5 56.6 86.2 15063  69.0
77.1 71.9 54.7 86.9 15171 685

Prumerge Vicuna-13B 100
Prumerge w/ AdaLLaVA-L Vicuna-13B 100
Prumerge w/ AdaLLaVA-L Vicuna-13B 85
Prumerge w/ AdaLLaVA-L Vicuna-13B 75
Prumerge w/ AdaLLaVA-L Vicuna-13B 60

72.8 71.0 58.4 78.5 14282 623
70.8 72.4 554 723 13435  60.7
70.4 72.7 553 715  1347.0 61.1
69.9 72.5 54.1 72.5 13550 60.7
68.9 72.7 51.6 72.5 1350.7  60.0

C. Additional Results on Content-Awareness

We provide additional results on content awareness by
showing the key-query attention scores of the latency to-
ken and the input visual tokens with different text questions,
similar to Fig. 4

Fig. 10 further demonstrate the model’s content-aware
behavior. For in the father-child scene, attention spreads
across the entire street view for scene description but con-
centrates on the middle when asking about their activity.
For the Happy Plaza image, attention focuses on the store-
front sign when asking about the location name, but shifts

to the promotional signage area when querying about spe-
cial offers. Similarly, in the restaurant scene, attention dis-
tributes across the interior elements (tables, counter, chairs)
when identifying the location type, but concentrates specif-
ically on the woman’s clothing when asked about her attire.
This consistently shows how the model adjusts its attention
based on query requirements.

D. Further Discussion

Modeling the Latency Constraints: Deterministic vs.
Probabilistic. We further elaborate different approaches for



Visual input example:

User

Describe this image.

Describe this image.

Describe this image.

The image features an older man sit-
ting at a table, surrounded by various
items. He is using a cell phone, possi-
bly checking messages or browsing the
internet...

The image features a wooden block
with a set of wooden letters arranged
in a way that spells out the word "press
stop.” ...

The image features a woman walking
down a street, holding a bouquet of
flowers in her hand...

AdalL.LaVA-L-50%

The image depicts a man sitting at a
table with a large number of papers
and books on it. He is using a cell
phone, possibly checking or communi-
cating with someone. The man is wear-
ing a tie, which adds to the professional
setting.

The table is surrounded by several
chairs, with one close to the man and
others further away. A clock can be
seen on the left side of the table, and
a handbag is placed on the right side.
The scene appears to be a workspace or
a study area, with the man working on
his tasks and using the cell phone.

The image features a wooden board
with a series of wooden chicks on it.
The wooden chicks are placed in a row,
with each one occupying a different po-
sition on the board. The arrangement
of the chicks is a close-up of the word
”press” and the word “stap.

The image captures a young woman
standing in a busy street, holding a bou-
quet of flowers. She appears to be smil-
ing, possibly indicating that she is en-
joying the moment. The street is filled
with various vehicles, including several
motorcycles and a motorcycle parked
close to the woman.

There are numerous people in the
scene, some standing closer to the
woman, while others are further away.
Some of the people are closer to the left
side of the image, while others are fur-
ther back, creating a sense of a busy
city street.

AdaLLaVA-L-75%

The image features a man sitting at a ta-
ble, surrounded by various items. He is
wearing a suit and tie, and appears to be
using a cell phone. The table is set with
a clock, a cup, and a book. There are
also two chairs in the scene, one near
the man and another further away.

In the background, there are two more
books placed on the ground, and a
handbag is located near the edge of the
scene. The man seems to be engaged in
a task or a conversation, as evidenced
by his use of the cell phone.

The image features a wooden word
puzzle made up of four wooden letters,
each with a number on them. The let-
ters are arranged in a way that reads
"Press Stop.” The letters are placed on
a white background, creating a visually
appealing and playful display. The ar-
rangement of the letters and numbers
adds a unique and creative touch to the
word puzzle.

The image depicts a woman walking
down a street, holding a bouquet of
flowers in her hand. She is wear-
ing a dress and appears to be enjoying
her time outdoors. The street is lined
with various vehicles, including motor-
cycles and a truck, parked along the
side.

There are several people in the scene,
some of whom are walking or stand-
ing near the vehicles. A handbag can
be seen resting on the ground, possi-
bly belonging to one of the individuals.
The overall atmosphere of the scene is
lively and bustling, with people going
about their daily activities.

AdaLLaVA-L-100%

The image features an older man sitting
at a table, working on a laptop. He is
surrounded by various items, including
a cup, a cell phone, and a book. The
table is adorned with a red and black
tablecloth, and there are several signs
and posters on the wall behind him.

In the room, there are two chairs, one
near the man and another further away.
A clock is also visible on the wall, in-
dicating the time. The scene appears to
be a workspace or a study area, with the
man focused on his tasks.

The image features a wooden tray with
a set of wooden letters arranged on it.
The letters spell out the word “Press
Stop,” with each letter positioned next
to the other. The arrangement of the let-
ters creates a visually appealing and or-
ganized display. The wooden tray itself
is placed on a white surface, which fur-
ther emphasizes the contrast between
the wooden letters and the background.

The image depicts a woman walking
down a street, holding a bouquet of
flowers in her hand. She is wearing a
flowered dress and appears to be enjoy-
ing her time. The street is lined with
various vehicles, including several mo-
torcycles parked on both sides of the
road.

There are also a few people walking
around, some of whom are carrying
handbags. The scene captures a lively
atmosphere with people going about
their daily activities.

Table 4. AdaLLLaVA-L on LLaVA 1.5-7b model, generating appropriate responses while adapting to varying computational budgets.



Question:

Answer:

Question:

Answer:

Question:

Answer:

Describe the scene?

The scene depicts a
man walking down a
sidewalk with a young
boy on a bicycle. The
man is holding the
boy's hand, ensuring
his safety as they walk
together. There are
several other people in
the background,
possibly going about
their daily activities.
The setting appears to
be a city street, with a
mix of pedestrians and
urban elements.

What is the name of
the place?

The name of the place
is Happy Plaza.

Where is this place?

This place is a
restaurant, as
evidenced by the
presence of a dining
table, chairs, and a
counter. The woman is
standing on a
staircase, possibly near
the entrance or exit of
the restaurant.

What are they doing?

The man and the child
are walking together
on a sidewalk, with the
man pushing a bike
with a child on it.

Are there any special
promotion?

Yes, there is a special
promotion at the
Happy Plaza shopping
center. The store is
advertising a buy one,
get one free deal,
which is likely to
attract customers and
encourage them to
shop at the location.

What is the woman
wearing?

The woman is wearing
a pink shirt and white
shorts.

Figure 10. The key-query attention scores between latency token
and visual tokens. The latency input is 1.0 in these examples.

modeling latency constraint when learning the scheduler. In
Sec. 3.3, we have described a relaxed version of the con-

strained optimization using a deterministic, optimization-
based approach that minimizes the following loss function

argmin —¥%;logp (z¢ = f(-)) + A|[Latency(f(-)) — I||3.

In addition to this loss, we have also experimented with
a different training objective using a hinge loss to encode
the latency constraints.
argmin —X;logp (zf = f(-))+Amax(0,Latency(f(-))—1).

0,9

Both approaches lead to similar results. The learned
schedulers often fail to adhere to the latency budget, or do
not fully use the budget and thus show worse accuracy. We
conjecture that the main issue is that the relaxed constrained
optimization can not handle hard latency constraint, and
may overlook the balance between accuracy and latency.

In contrast, our probabilistic approach demonstrates su-
perior adaptability across different latency budgets com-
pared to theses deterministic approach. This is clearly
shown in our ablation results in Tab. 2, Sec. 4.4. It is per-
haps interesting to note that our sampling process that en-
forces the latency constraint is conceptually similar to a pro-
jection step in projected gradient descent, in which a fea-
sible solution satisfying the constraint is always produced
given a initial solution. This ensures both constraint compli-
ance and improved performance under varying conditions.

Limitation and Future Directions. With 100% latency,
our approach can outperform the base model on some
datasets (e.g. MME), yet may fall slightly behind the base
model’s performance on others (e.g. VQAv2), as shown in
Figs. 3a and 3b. This is likely because the full model has al-
ready reached optimal performance on VQAv2. The adap-
tation mechanism, while successful in creating efficiency
gains, introduces minor perturbations from the optimal so-
lution in the optimization landscape. We will further inves-
tigate this direction.

Another promising direction is to explore LoRA [18]-
based fine-tuning for our approach, instead of full fine-
tuning as currently considered in our experiments. Doing
so will lead to adapters that are separated from the base
MLLM, i.e., the pre-trained parameters and the architec-
ture of the base MLLMs remain unchanged. If successful,
this will allow us to design multiple adapters for the same
MLLMs, with each potentially tailored for one deployment
scenario (e.g., server farm vs. edge device).

E. Additional Related Work

Large Languge Models. Large Language Models (LLMs)
are typically based on the Transformer architecture and
are characterized by their enormous number of parame-
ters and extensive pretraining on vast datasets. Notable ex-
amples include LLaMA[1, 57], ChatGPT [42], GPT4 [43]



and Claude [3]. These models utilize various pretraining
methods such as masked language modeling [9, 36], and
autoregressive pretraining [5]. Researchers have investi-
gated the effects of pretraining on language model perfor-
mance. Adapting LLMs to various downstream tasks has
garnered significant attention in the field. This adaptation
can take many forms, including the use of adapters [17, 20],
multitask fine-tuning [61, 65, 69], in-context learning [ 10,
51, 52, 55, 67, 68], reinforcement learning from human
feedback (RLHF) [44], and methods for accelerating infer-
ence [31, 66]. Each of these approaches aims to enhance
LLM performance or efficiency for specific applications or
domains, allowing these powerful models to be tailored to a
wide range of tasks and requirements.
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