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Foundation Model

Source "On the opportunities and risks of foundation models." (2021)
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Take-Home Message

We propose Adalnf—an adaptive inference framework that dynamically
allocates and executes different parts of foundation models to reduce
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Multiple execution

computation costs. branches of ResNet50
pretrained on ImageNet.

Each point refers a branch.
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Key Intuition

e Existing large pretrained models has built-in redundancy, since 0 20 40 60 80 100
. : : L Percentage of MACs to full model
modern training techniques adopt aggressive regularization (e.g., \ y
stochastic depth). Such redundancy allows us to treat a model as a
collection of execution branches. Problem Formulation

e Different execution branches can be tailored for runtime conditions,
thereby achieving adaptive inference.

Foundation model: fg gp(x, M)
light-weighted scheduler: gs(, )
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e Given latency requirement M | have execution plan
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e Our framework Adalnf learns a scheduler to decide on the branch to

execute, based on a compute budget as well as the input data. Prediction f(x,p), actual latency M (z, p)

Loss:
e We conduct preliminary experiments on CIFAR and ImageNet using R o
pre-trained ResNet and CLIP models. We show Adalnf can achieve L=LcE (y’ f(gj7 p)) + AL macs (M, M)
varying accuracy and latency trade-offs in response to the input data o A A
and the latency budget, outperforming baselines. Liacs (M, M) = max{0, M (x,p) — M}
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(@) Results of ResNet18 on CIFAR100. (b) Results of ResNet32 on CIFAR100.



