Improving Foundation Models for Few-Shot Learning via Multitask Finetuning

WISCONSIN UNIVERSITY OF WISCONSIN-MADISON

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Yin Li, Yingyu Liang

Motivation

Take-Home Message

We use a paradigm that first finetunes a foundation model with multiple relevant tasks before adapting it to a target task.

Key Intuition

- Pre-training uses unlabeled and noisy data for general purpose learning, where the model learns representation rather than task-specific knowledge. Its performance on a specific task may only be adequate.
- Although the target data is limited, we have a clear understanding of the target task and its associated data.
 - We select additional data from a relevant source that covers its characteristic data.
 - We construct specific tasks for multitask finetuning to allow the model to handle the particular types of target tasks.

Experiments

Few-shot Vision tasks

15-way accuracy (%) on tiered-ImageNet, 1 image per class in target task

Backbone	Direct Adaptation	Finetuning
ViT-B32	59.55 ± 0.21	68.57 ± 0.37
ResNet50	51.76 ± 0.36	57.56 ± 0.36

200 finetuning tasks, 150 images per task

Accuracy with varying number of tasks and samples

Theoretical Analysis

Contrastive Learning

Objective function:
$$\mathcal{L}_{un}(\phi) := \mathbb{E}\left[-\log\left(\frac{e^{\phi(x)^{\top}\phi(x^{+})}}{e^{\phi(x)^{\top}\phi(x^{+})} + e^{\phi(x)^{\top}\phi(x^{-})}}\right)\right]$$

Supervised loss respect to a task *T*, *W* is a linear classifier:

$$\mathcal{L}_{\sup} (\mathcal{T}, \phi) := \min_{W} \underset{x,z}{\mathbb{E}} [\ell(W\phi(x), z)]$$

Multitask finetuning

Suppose we construct *M* tasks, each with *m* sample

$$\min_{W_i \in \mathbb{R}^d, \phi \in \Phi} \frac{1}{M} \sum_{i=1}^M \frac{1}{m} \sum_{j=1}^m \ell\left(W_i \cdot \phi\left(x_j^i\right), z_j^i\right), \quad \text{s.t.} \quad \widehat{\mathcal{L}}_{un}(\phi) \le \epsilon_0$$

An example of 4-shot 2-class image classification Source: "Meta-Learning: Learning to Learn Fast", 2018.

Few-shot Language tasks

Text classification for different text dataset, with prompt-base finetuning

	SST-2 (acc)	SST-5 (acc)	MR (acc)	CR (acc)	MPQA (acc)	Subj (acc)	TREC (acc)	CoLA (Matt.)
Prompt-based zero-shot Multitask FT zero-shot	83.6 92.9	35.0 37.2	80.8 86.5	79.5 88.8	67.6 73.9	51.4 55.3	32.0 36.8	2.0 -0.065
Prompt-based FT [†] Multitask Prompt-based FT + task selection	92.7 (0.9) 92.0 (1.2) 92.6 (0.5)	47.4 (2.5) 48.5 (1.2) 47.1 (2.3)	87.0 (1.2) 86.9 (2.2) 87.2 (1.6)	90.3 (1.0) 90.5 (1.3) 91.6 (0.9)	84.7 (2.2) 86.0 (1.6) 85.2 (1.0)	91.2 (1.1) 89.9 (2.9) 90.7 (1.6)	84.8 (5.1) 83.6 (4.4) 87.6 (3.5)	9.3 (7.3) 5.1 (3.8) 3.8 (3.2)
	MNLI	MNLI-mm	SNLI	QNLI	RTE	MRPC	QQP	
	(acc)	(acc)	(acc)	(acc)	(acc)	(F1)	(F1)	
Prompt-based zero-shot Multitask FT zero-shot	50.8 63.2	51.7 65.7	49.5 61.8	50.8 65.8	51.3 74.0	61.9 81.6	49.7 63.4	

Our main results using RoBERTa-large. †: Result in (GFC20); [GFC20] "Gao, Fisch, and Chen. Making pre-trained language models better few-shot learners." ACL'2020.

Zero-shot Vision-Language tasks

160(all)-way zero-shot accuracy (%) on tiered-ImageNet test split

Backbone	Zero-shot	Multitask finetune
ViT-B32	69.9	71.4

Effects of multitask finetuning

Hidden Representation Data Model

- First sampling the latent class, and then sampling input.
- In contrastive pre-training, positive pair sampled from the same latent class.
- A task *T* contains a subset of latent classes.

Proposition of target task error (Informal)

Suppose in pre-training we have target task error bounded by ε with high probability, our multitask fineutning reduce error on target task to $\alpha\varepsilon$, where finetuning sample complexity is $\theta(1/\alpha\varepsilon)$.