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New Paradigm: Pretraining + Adaptation

Paradigm shift: supervised learning = pre-training + adaptation



New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning = pre-training + adaptation

Pre-training Adaptation

Pre-trained —) Adapted
Data — Model

|

Massive

Labeled
Data



New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning — pre-training + adaptation

representation Train a classifier

assive Pre-training
MData —) —)
[ - o0 ‘, o . o0

Labeled
DEI]




New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning — pre-training + adaptation

Figure 1: Matching Networks architecture

Adaptation of a pre-trained image encoder
Figures from: Matching Networks for One Shot Learning, 2017.



New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning — pre-training + adaptation

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports

Paying off the national debt will be Apple ... development of in-house
extremely painful. // Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profit to improve. // profit to improve. //

Adaptation of a pre-trained language decoder

Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning, 2022.
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Paradigm shift: supervised learning — pre-training + adaptation
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What does pre-training look like?

e Supervised learning

e Self-supervised learning:

O

Next sentence prediction (BERT)

Masked language prediction (BERT, RoBERTa)

Auto-regressive language modeling (GPT series)

Contrastive learning (SimCLR, SimCSE, CLIP, DINO)



Intro - Contrastive Learning
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(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

SimCLR - (Image, Image) Image Data Augmentation
N o hee d | 3 b el S Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020



Intro - Foundation Model

OpenAl’s
CLIP Model _ ©openar

® GPT-4

The history and evolution of foundation models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.



Intro - Foundation Model
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Figures from: On the opportunities and risks of foundation models, 2021.



Intro - Foundation Model
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Figures from: On the opportunities and risks of foundation models, 2021.

Label Efficiency

Figures from: https://www.youtube.com/watch?v=U6uFOIURcDO&ab_channel=ShusenWang, 2020



https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang

Paradigm: Pre-training + Adaptation
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Pre-training + Finetuning + Adaptation
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An example of 4-shot 2-class image classification

Figures from: Meta-Learning: Learning to Learn Fast, 2018.



https://lilianweng.github.io/posts/2018-11-30-meta-learning/

Problem Setup - Hidden representation data model

e Llatentclass 2 € C  overdistribution z ~ 7

® Task 7 = (21,...,2x41) CC , instance z ~ D(z)

e o hypothesis class of representation functions, e.g, ResNet, ViT

° g( qu as prediction logits of latent class

U(g(z),2) =
Dog ¢2 92

. . e { exp (9(x):) }
: . ) K11
by Grein > k1 €xp (9(x)x)




Problem Setup - Objective for a downstream task?

e Llatentclass 2 € C  over distribution z ~ n

o Task 7 = {z1,2} C C ,instance z ~ D(z)

e ¢ c ® hypothesis class of representation functions, e.g, ResNet, ViT
° g(w) = qu(a:) as prediction logits of latent class

® supervised loss w.r.t a task:

Log(T,0) =min B E _[[(Wo(x), )]



Problem Setup - Contrastive pre-training
° (Z, Z_) ~ 772’ ZE,CE+ ~ D(Z), Tr o~ D(Z_), T = Pr(z,z—)~n2 {Z — Z_}

1 cb(@) " o(a™)
T8 6@ T 1 pd@) (@)

e Contrastive loss:

E

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



Problem Setup - Contrastive pre-training
o (2,27)~n? z,27 ~D(z), 2~ ~D(27)

e Contrastive loss:

Lun(9) =E [ty (¢(x)" (¢(zT) — p(z7)))]
(@) 1= % S0 [lu (6(@)T (D) — d(27)))]

e Inparticular: £, (v) = log(1 + exp(—w)) will recover the loss in previous slide

@_»@ negative pair
positive
6 Q .

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



Problem Setup - Multitask Finetuning

e Suppose in pre-training we have Lun(gb) < €g
® Suppose we construct IV tasks, each with m sample

e We further multitask finetune to get a new ¢’ by:

<
3

, 1 1
min — —
W,cRd . pc® M — m ;

(Wi - p(xh),2), st Lun(®) < €

I\

4 N
Intuition: Comparing to direct training, this reduce hypothesis

space from ® to @(¢y) — {¢ €®: Loun(e) < 60}
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Main Result

® Suppose target task is 76

® Suppose thereis ¢* such that supervised loss are small across all tasks

e \We want to bound ﬁsup (7o, qb) = ﬁsup (767 ¢*)

Theorem 1 (Contrastive pre-training loss(baseline))
Suppose in pre-training we have £,,,(¢) < o, then:

Lowp (76:8) = Loy (T0,6") < O (260 = 7) = Loup (67))



Main Result

® Suppose target task is 76
e We wantto bound Ly, (To, ) — Lsup (To, ¢¥)

Theorem 2 (Multitask finetuning loss(Ours))
Suppose we solve multitask finetuning optimization with empirical loss smaller
than €; = 2aeq and got ¢'. If:

Mz (L R @)+ 2og(5)]) Mm>0 (é [RM’” (@ () +  og (%)D

Then with prob 1 — §,
sup (767¢) Sup (767¢*) < O(OA (260 _T) _[’SUP (¢*>)



Remark

e Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce

error on target task by 2(1 — a)e¢g

where finetuning sample complexity is e <i>

a€g

e Comparing to traditional supervised learning, self-supervised pre-training reduce

errorby O ( Ryim(P) — Rarm (@(60))])



Experiments: Few-shot Vision tasks

15-way accuracy (%) on tiered-ImageNet, 1 image per class in target task

Backbone Direct Adaptation  Finetuning

ViT-B32 09.55 = 0.21 68.57 £+ 0.37
ResNet50 51.76 £ 0.36 57.56 = 0.36

Effects of multitask finetuning
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Experiments: Few-shot Vision tasks

15-way accuracy (%) on tiered-ImageNet, 1 image per class in target task
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Experiments: Few-shot Language task

Text classification for different text dataset, with prompt-base finetuning

SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
Prompt-based zero-shot 83.6 35.0 80.8 79.5 67.6 514 32.0 20
Multitask FT zero-shot 92.9 37.2 86.5 88.8 73.9 553 36.8 -0.065
Prompt-based FT' 92.7(0.9) 474@R2.5) 870(1.2) 903(1.0) 84.7(2.2) 91.2(1.1) 84.8(5.1) 93(7.3)
Multitask Prompt-based FT 92.0 (1.2) 48.5(1.2) 86.9(2.2) 90.5(1.3) 86.0(1.6) 899(22.9) 83.6(44) 5.1(3.8)
+ task selection 92.6(0.5) 47.1(2.3) 872(1.6) 91.6(09) 852(1.00 90.7(1.6) 87.6(3.5) 3.8(3.2)
MNLI MNLI-mm SNLI QNLI RTE MRPC QQr
(acc) (acc) (acc) (acc) (acc) (F1) (F1)
Prompt-based zero-shot 50.8 51.7 49.5 50.8 51.3 61.9 49.7
Multitask FT zero-shot 63.2 65.7 61.8 65.8 74.0 81.6 63.4
Prompt-based FT' 683(23) 705019 77237 64542 69.13.6) 745(53) 655(5.3)
Multitask Prompt-based FT 709 (1.5) 73.4(1.4) 78.7(2.0) 71.72.2) 74.0(2.5) 79.54.8) 67.9(.6)
+ task selection 73.5(1.6) 758(1.5) 774(1.6) 72.0(.6) 70.0(1.6) 76.0(6.8) 69.8(1.7)

Our main results using RoBERTa-large. T: Result in (GFC20);

[GFC20] Gao, Fisch, and Chen. Making pre-trained language models better few-shot learners. ACL'2020.



Experiments: zero-shot vision language task

Conditional context optimization for CLIP model

context tokens

V1| V2| | U [CLASS] . Text Encoder

meta token | 7T

/
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CoCoOp

Figures from: Conditional Prompt Learning for Vision-Language Models, 2022.



Experiments: zero-shot vision language task

160(all)-way zero-shot accuracy (%) on tiered-ImageNet test split

Backbone Zero-shot Multitask finetune
ViT-B32 69.9 71.4

Effects of multitask finetuning



Future Work

e Theoretically: How would we quantify the relationship of data between multitask and
target task? Concrete and well-motivated problem instances satisfying the task diversity
assumptions for instantiating the error guarantee.

e Empirically: Does task diversity provide any insights on data selection in multitask
finetuning? Can we design better strategies for constructing and choosing finetuning
task?



Take Home Message

Task 1
Vassive Tosk2
‘ Foundation ‘ LIt

DE]s ‘ Adapted
= Vel \

. Target
(N J
Y (N J
Y
Pre-training g J
Multitask finetuning '
Adaptation

Thanks!



Appendix

Our Workshop Poster: link

Our Workshop Paper: link

Improving Foundation Models for Few-Shot Learning
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Take-Home Message

We use a paradigm that irstfinetunes a foundation model with multiple:
relevant tasks before adapting it to a target task.
Key Intuition
o Pro-traini o
leaming, where the model leams representation rather than
task-specific knowledge. Its performance on a specific task may only
be adequate.
Although the target data is limited, we have a clear understanding of
the target task and its associated data
B it from a relevant
characteristic data. |
© We construct specific tasks for multitask finetuning to allow the
model to hande the particular types of target tasks.
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Zero-shot vision-language task
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Contrastive Learning
objective function: £ (4

ool
e (e Condhdndll
E [-log | Smmeen T oot olem)

Supervised loss respect to a task T, Wis a linear classifier:
Lup (T.0) = min E[((Wo(x).2)]

Hidden Representation Data Model

 First sampling the latent class, and then sampling input.

 In contrastive pre-training, positive pair sampled from the same
latent class.

* Atask T contains a subset of latent classes.

Multitask finetuning
Suppose we construct M tasks, each with m sample

i
1 1 . o

: M m £ 5 5 3 < &

e 7 2 2 o) ), st Le@se

Proposition of target task error (Informal)
Suppose in pre-training we have target task error bounded by ¢
with high probability, our multitask fineutning reduce error on target
task o ae, where finetuning sample complexity is 6(1/ae).



https://docs.google.com/presentation/d/1e9Tm3c3NE181x8JL8Wk3jay4vfyim8eL/edit?usp=sharing&ouid=100781139020092094346&rtpof=true&sd=true
https://openreview.net/pdf?id=szNb8Hp3d3

Problem Setup - Contrastive pre-training
o (z,27)~n? z,2" ~D(z), 2~ ~D(27)

1 cb(@) " o(a™)
T8 6@ T 1 pd@) (@)

e Contrastive loss:

E

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



Main Result

® Suppose target task is 76
e Wewanttobound L, (70, ®)

e let ( denote the conditional distribution of (2, 25) ~ n? conditioned on 21 # 29

Definition 1 (Averaged representation difference)

JC(¢» é) = T@C [ﬁsup(Ta ¢) — Esup(Ta qg)] — Lsup(@ - Esuz9(¢)

Definition 2 (worst-case representation difference)

ey (6,8) = 5D | Loy (To,®) = Loup (T0,0)]

ToCCo

~

(v, €)-diversity: Forany ¢, ¢ € ®, de, (¢, ) < de (¢ (6, 0) v+ e



Main Result

® Suppose target task is 76
e let C denote the conditional distribution of (21,22) ~ n? conditioned on 21 7 22

e (v, €)-diversity: Forany @, & c @, de, (¢, gg) < JC(¢, &)/V + €

® Suppose thereis ¢*such that supervised loss are small across all tasks

Theorem 1 (Contrastive pre-training loss(baseline))
Suppose in pre-training we have £,,,(¢) < o, then:

A 1 1
Esup(7B7¢) T Lsup(%7¢*) S —

vil—rT1

(260 — ’7') — Esup(¢*) + €



Main Result

Suppose target task is 76

let ¢ denote the conditional distribution of (z1,22) ~ 1 conditioned on 21 # 22
(v, €) -diversity: Forany ¢, & e ®, de, (o, gg) < JC(¢7 &)/V + €

Theorem 2 (Multitask finetuning loss(Ours))
Suppose we solve multitask finetuning optimization with empirical loss smaller
than ¢ = 21 (2¢, — 7) and got ¢’. If:

31—71

Mz (L R @)+ 2og(5)]) Mm>0 (é [RMm (@ () +  og (§)D

Then with prob 1 — §,

‘Csup(%a ¢,) - Lsup(’ﬁ)a ¢*) S % |:OZL(2€O - T) - Esup(¢*)] + €

l1—171



Remark
e Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce

v

error on target task by 1 /(1 -a):2-(2¢ — T)]

where finetuning sample complexity is e (i>

a€g

e Comparing to traditional supervised learning, self-supervised pre-training reduce

errorby O ( Ryim(P) — Rarm (@(60))])



Experiments: Few-shot Vision tasks

5-way accuracy (%) on mini-imageNet, 1/10/20 image per class in target task
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