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New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning        pre-training + adaptation

Adaptation of a pre-trained image encoder
Figures from: Matching Networks for One Shot Learning, 2017.



New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning        pre-training + adaptation

Adaptation of a pre-trained language decoder
Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning, 2022.
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What does pre-training look like?

● Supervised learning

● Self-supervised learning: 

○ Next sentence prediction (BERT)

○ Masked language prediction (BERT, RoBERTa)

○ Auto-regressive language modeling (GPT series)

○ Contrastive learning (SimCLR, SimCSE, CLIP, DINO)



Image Data Augmentation
Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Intro - Contrastive Learning

SimCLR - (Image, Image)
No need labels

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020



Intro - Foundation Model

The history and evolution of foundation models
Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.



Intro - Foundation Model

Universality
Figures from: On the opportunities and risks of foundation models, 2021.



Intro - Foundation Model

Universality
Figures from: On the opportunities and risks of foundation models, 2021.

Label Efficiency 
Figures from: https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang, 2020

https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang
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Pre-training + Finetuning +  Adaptation

Foundation 
Model

Adapted
Model

Massive 
Data

Target 
Task

Pre-training

Adaptation

Task 1

Multitask finetuning

Task 2
Task 3

Task T

…



An example of 4-shot 2-class image classification
Figures from: Meta-Learning: Learning to Learn Fast, 2018.

https://lilianweng.github.io/posts/2018-11-30-meta-learning/


Problem Setup - Hidden representation data model

x

● Latent class                      over distribution

● Task             ,   instance

●                      hypothesis class of representation functions, e.g, ResNet, ViT

●        as  prediction logits of latent class

z ɸ(x) g(x)

Dog
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Problem Setup - Objective for a downstream task?

x

● Latent class                      over distribution

● Task     , instance

●                      hypothesis class of representation functions, e.g, ResNet, ViT

●        as  prediction logits of latent class

●  supervised loss w.r.t a task:

z ɸ(x) g(x) loss



Problem Setup - Contrastive pre-training
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Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023
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Problem Setup - Contrastive pre-training
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Data Model
Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023
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● Contrastive  loss: 

● In particular: will recover the loss in previous slide



Problem Setup - Multitask Finetuning
●  Suppose in pre-training we have 

●  Suppose we construct M tasks, each with m sample

● We further multitask finetune to get a new by:

Intuition:  Comparing to direct training, this reduce hypothesis 
space from to 



Main Result
● Suppose target task is 

● Suppose there is         such that supervised loss are small across all tasks 

● We want to bound

Theorem 1 (Contrastive pre-training loss(baseline))
Suppose in pre-training we have , then: 



Main Result
● Suppose target task is 

● We want to bound      

Theorem 2 (Multitask finetuning loss(Ours))
Suppose we solve multitask finetuning optimization with  empirical loss smaller 
than     and got     . If:

     , 

Then with prob              , 



Remark
● Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce 

error on target task by

where finetuning sample complexity is

 

●  Comparing to traditional supervised learning, self-supervised pre-training reduce 

error by



Experiments: Few-shot Vision tasks

15-way accuracy (%) on tiered-ImageNet, 1 image per class in target task

Effects of multitask finetuning



Experiments: Few-shot Vision tasks

15-way accuracy (%) on tiered-ImageNet, 1 image per class in target task

Accuracy with varying number of tasks and samples

ViT-B32 ResNet50



Experiments: Few-shot Language task

Text classification for different text dataset, with prompt-base finetuning

Our main results using RoBERTa-large. †: Result in (GFC20);

[GFC20] Gao, Fisch, and Chen. Making pre-trained language models better few-shot learners. ACL’2020.



Experiments: zero-shot vision language task

Conditional context optimization for CLIP model

 CoCoOp
Figures from: Conditional Prompt Learning for Vision-Language Models, 2022.



Experiments: zero-shot vision language task

160(all)-way zero-shot accuracy (%) on tiered-ImageNet test split

Effects of multitask finetuning



● Theoretically: How would we quantify the relationship of data between multitask and 
target task? Concrete and well-motivated problem instances satisfying the task diversity 
assumptions for instantiating the error guarantee.

● Empirically: Does task diversity provide any insights on data selection in multitask 
finetuning? Can we design better strategies for constructing and choosing finetuning 
task?

Future Work
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Appendix

Our Workshop Poster: link

Our Workshop Paper: link

https://docs.google.com/presentation/d/1e9Tm3c3NE181x8JL8Wk3jay4vfyim8eL/edit?usp=sharing&ouid=100781139020092094346&rtpof=true&sd=true
https://openreview.net/pdf?id=szNb8Hp3d3
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Main Result
● Suppose target task is 

● We want to bound

●  let       denote the conditional distribution of             conditioned on

Definition 1 (Averaged representation difference)

Definition 2 (worst-case representation difference)

-diversity: For any 
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Main Result
● Suppose target task is 

●  let       denote the conditional distribution of             conditioned on
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Theorem 2 (Multitask finetuning loss(Ours))
Suppose we solve multitask finetuning optimization with  empirical loss smaller 
than              and got     . If:
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Then with prob              , 



Remark
● Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce 

error on target task by

where finetuning sample complexity is

 

●  Comparing to traditional supervised learning, self-supervised pre-training reduce 

error by



Experiments: Few-shot Vision tasks

5-way accuracy (%) on mini-ImageNet, 1/10/20 image per class in target task

Accuracy with varying number shot images

ViT-B32


