

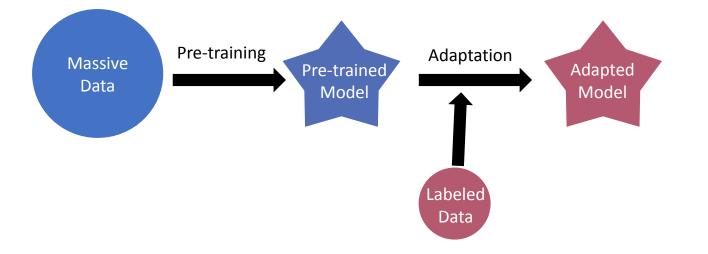
Towards Few-Shot Adaptation of Foundation Models via Multitask Finetuning

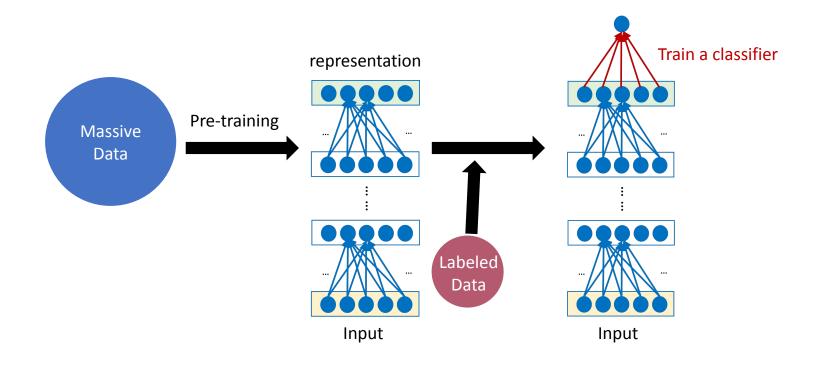
Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Fangzhou Mu, Yin Li, Yingyu Liang University of Wisconsin - Madison

IBM Research Seminar

Paradigm shift: supervised learning \implies pre-training + adaptation

Paradigm shift: supervised learning \implies pre-training + adaptation





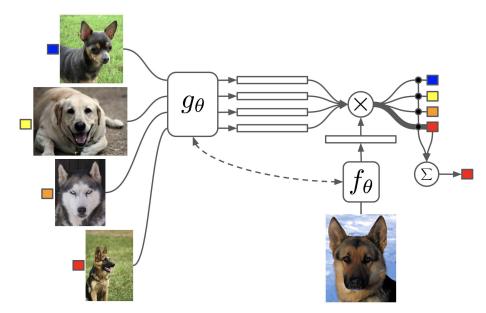


Figure 1: Matching Networks architecture Adaptation of a pre-trained image encoder

Figures from: Matching Networks for One Shot Learning, 2017.

Circulation revenue has increased by 5% in Finland. // Positive

Panostaja did not disclose the purchase price. // Neutral

Paying off the national debt will be extremely painful. // Negative

The company anticipated its operating profit to improve. // _____

Circulation revenue has increased by 5% in Finland. // Finance

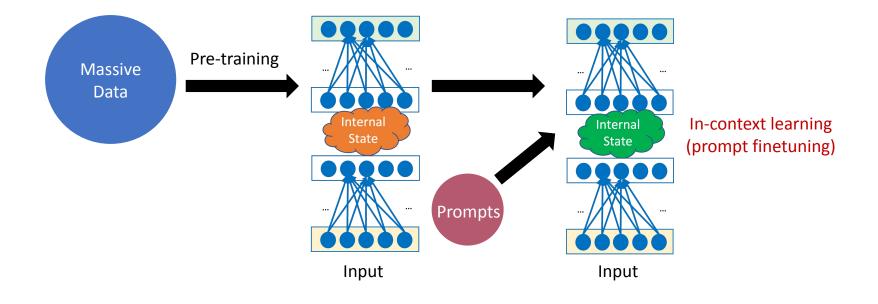
They defeated ... in the NFC Championship Game. // Sports

Apple ... development of in-house chips. // Tech

The company anticipated its operating profit to improve. //

Adaptation of a pre-trained language decoder

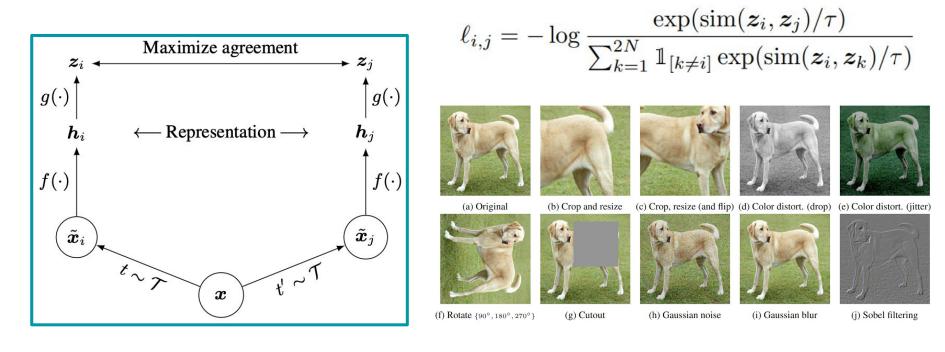
Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning, 2022.



What does pre-training look like?

- Supervised learning
- Self-supervised learning:
 - Next sentence prediction (BERT)
 - Masked language prediction (BERT, RoBERTa)
 - Auto-regressive language modeling (GPT, Llama)
 - Contrastive learning (SimCLR, SimCSE, CLIP, DINO)

Intro - Contrastive Learning



SimCLR - (Image, Image) No need labels

Image Data Augmentation

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

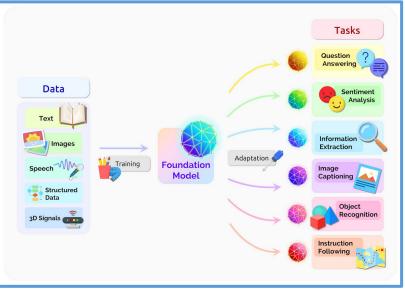
Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Intro - Foundation Model

The history and evolution of foundation models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.

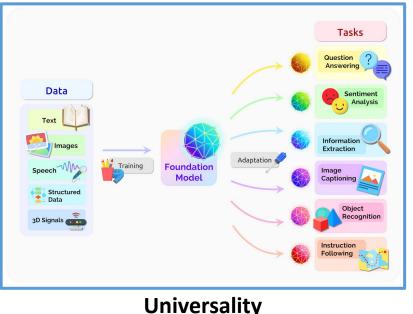
Intro - Foundation Model



Universality

Figures from: On the opportunities and risks of foundation models, 2021.

Intro - Foundation Model



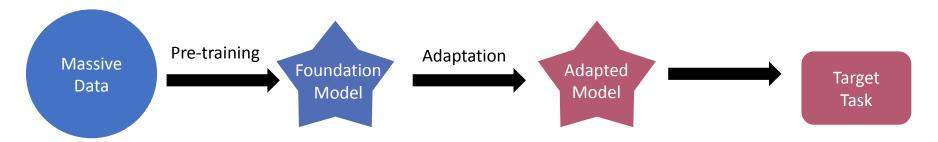
Few-Shot Learning:
Pretraining + Fine TuningImage: transformed black black

Label Efficiency

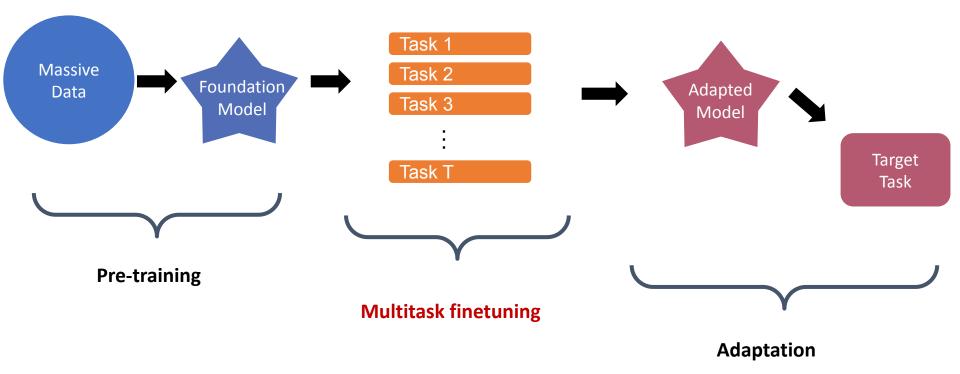
Figures from: On the opportunities and risks of foundation models, 2021.

Figures from: https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWana, 2020

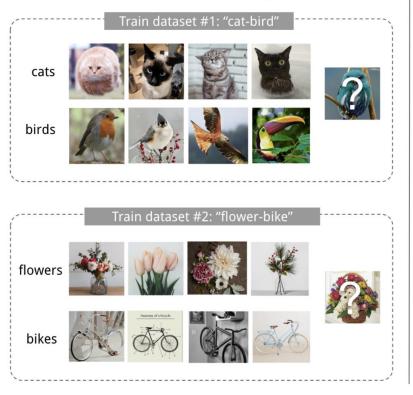
Paradigm: Pre-training + Adaptation

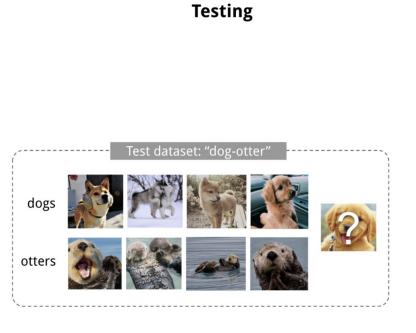


Pre-training + Finetuning + Adaptation



Training



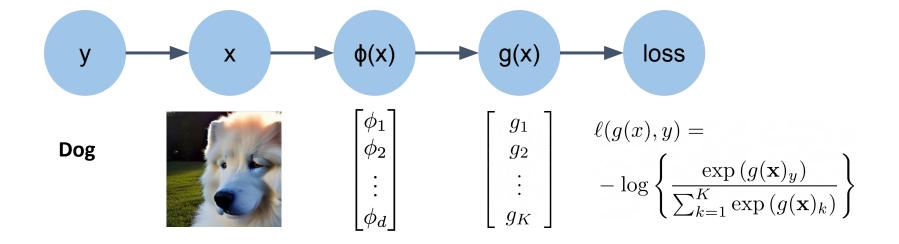


An example of 4-shot 2-class image classification

Figures from: Meta-Learning: Learning to Learn Fast, 2018.

Problem Setup - Hidden representation data model

- Class $y \in \mathcal{C}$ over distribution $y \sim \eta$
- Task $\mathcal{T} = (y_1, \dots, y_K) \subseteq \mathcal{C}$, sample $x \sim \mathcal{D}(y)$
- $\phi \in \Phi$ hypothesis class of representation functions, e.g. ResNet, ViT
- $g(x) = W\phi(x)$ as prediction logits of latent class



Problem Setup - Objective for a downstream task

- Class $y \in \mathcal{C}$ over distribution $y \sim \eta$
- Task $\mathcal{T} = \{y_1, y_2\} \subseteq \mathcal{C}$, instance $x \sim \mathcal{D}(y)$
- $g(x) = W\phi(x)$ as prediction logits of latent class
- supervised loss w.r.t a task:

$$\mathcal{L}_{\sup} (\mathcal{T}, \phi) := \min_{W} \mathbb{E}_{y \sim \mathcal{T}_{x} \sim \mathcal{D}(y)} [\ell(W\phi(x), y)]$$

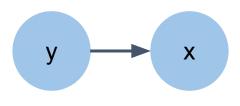
$$(\mathbf{y}_{1})$$

$$(\mathbf{y}_{2})$$

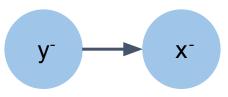
Pretraining - Contrastive learning

- $(y, y^-) \sim \eta^2$, $x, x^+ \sim \mathcal{D}(y)$, $x^- \sim \mathcal{D}(y^-)$, $\tau := \Pr_{(y, y^-) \sim \eta^2} \{y = y^-\}$
- Contrastive loss:

$$\mathbb{E}\left[-\log\left(\frac{e^{\phi(x)^{\top}\phi(x^{+})}}{e^{\phi(x)^{\top}\phi(x^{+})} + e^{\phi(x)^{\top}\phi(x^{-})}}\right)\right]$$

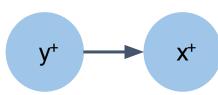


positive pair



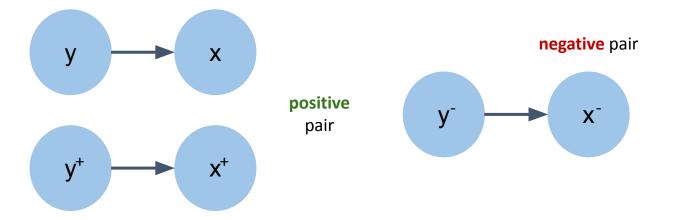
negative pair

Data Model Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



Pretraining - Contrastive learning

- $(y, y^-) \sim \eta^2$, $x, x^+ \sim \mathcal{D}(z), x^- \sim \mathcal{D}(z^-)$
- Contrastive loss: $\mathcal{L}_{con-pre}(\phi) := \mathbb{E}\left[\ell_u\left(\phi(x)^\top \left(\phi\left(x^+\right) \phi\left(x^-\right)\right)\right)\right]$ $\widehat{\mathcal{L}}_{con-pre}(\phi) := \frac{1}{N}\sum_{i=1}^N \left[\ell_u\left(\phi(x_i)^\top \left(\phi\left(x_i^+\right) \phi\left(x_i^-\right)\right)\right)\right]$
- In particular: $\ell_u(v) = \log(1 + \exp(-v))$ will recover the contrastive loss in previous slide



Pretraining - Supervised learning

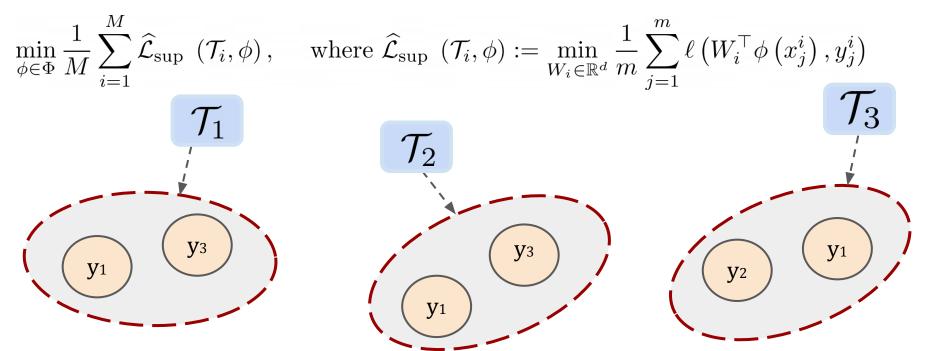
- $y \sim \eta$, $x \sim \mathcal{D}(y)$
- supervised loss: $\ell(g(x), y) = \ell_u \left((g(x))_y (g(x))_{y' \neq y, y' \in \mathcal{C}} \right)$ $\mathcal{L}_{sup-pre}(\phi) = \min_W \mathbb{E}_{x,y} [\ell(W\phi(x), y)]$
- In particular: $\ell_u(v) = \log(1 + \exp(-v))$ will recover the logistic loss

y → x

To simplify notation, we will use $\mathcal{L}_{pre}(\phi)$, we denote pretrained model as $\hat{\phi}$

Problem Setup - Multitask Finetuning

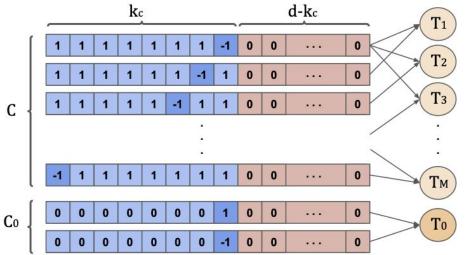
- Suppose we construct M tasks $\{\mathcal{T}_1, \mathcal{T}_2, \dots, \mathcal{T}_M\}$
- Suppose each task with m sample $\mathcal{S}_i := \left\{ \left(x^i_j, y^i_j
 ight) : j \in [m]
 ight\}$
- Given pretrained $\hat{\phi}$. We further multitask finetune it by objective:



Diversity and Consistency

Definition 1 (Diversity and Consistency (Informal)) Consider the latent feature space of target task data and finetuning task data. **Diversity** refer to the coverage of the finetuning tasks on the target task in the latent feature space. **Consistency** refer to similarity in the feature space.

• Suppose target task is \mathcal{T}_0



- Suppose target task is \mathcal{T}_0
- Let $\phi^* \in \Phi$ denote the model with the lowest target task loss $\mathcal{L}_{sup}(\mathcal{T}_0, \phi^*)$
- We want to bound $\mathcal{E}(\phi) = \mathcal{L}_{\sup} (\mathcal{T}_0, \phi) \mathcal{L}_{\sup} (\mathcal{T}_0, \phi^*)$
- Pretraining loss as $\hat{\mathcal{L}}_{\mathrm{pre}} \left(\hat{\phi} \right)$

Theorem (Multitask finetuning loss (Informal))

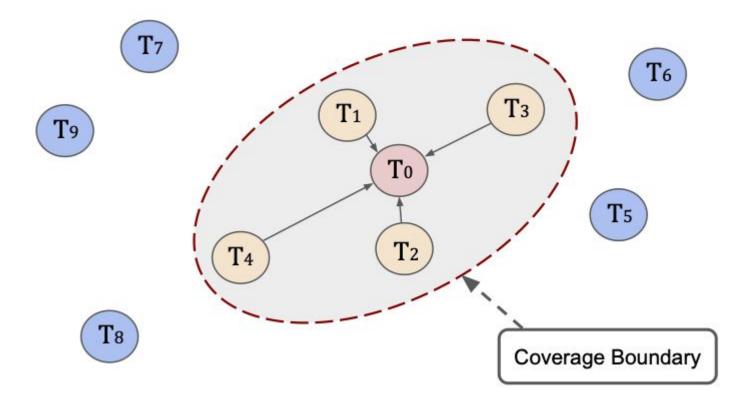
Suppose in pretraining we have empirical pretraining loss $\hat{\mathcal{L}}_{\text{pre}}(\hat{\phi}) \leq \epsilon_0$ The error will be $\mathcal{E}(\hat{\phi}) \leq \mathcal{O}(\epsilon_0)$. After sufficient multitask finetuning and get ϕ' , the error will be $\mathcal{E}(\phi') \leq \mathcal{O}(\alpha \epsilon_0)$ with high probability. The finetuning sample complexity will be $\Omega\left(\frac{1}{\alpha \epsilon_0}\right)$.

Remark

• Comparing to pretraining + adaptation (baseline), the multitask fineutning procedure reduce error on target task by $(1-\alpha)\frac{2\epsilon_0}{1-\tau}$ with required sample complexity $\Omega\left(\frac{1}{\alpha\epsilon_0}\right)$

- Ideally, data from the finetuning tasks should satisfy two requirements:
 - **Consistency**: finetuning tasks similar the target task,
 - **Diversity**: finetuning tasks are sufficiently diverse to cover a wide range of patterns that may be encountered in the target task.

Practical solution: Task selection



Practical solution: Task selection

Algorithm 1 Consistency-Diversity Task Selection

Input: Target task \mathcal{T}_0 , candidate finetuning tasks: $\{\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_M\}$, model ϕ , threshold p. 1: Compute $\phi(\mathcal{T}_i)$ and $\mu_{\mathcal{T}_i}$ for $i = 0, 1, \ldots, M$.

- 2: Sort *T_i*'s in descending order of similarity (*T₀*, *T_i*). Denote the sorted list as {*T₁*', *T₂*', ..., *T_M*}.
 3: L ← {*T₁*'}
- 4: for i = 2, ..., M do
- 5: If coverage $(L \cup \mathcal{T}'_i; \mathcal{T}_0) \ge (1+p) \cdot \text{coverage}(L; \mathcal{T}_0)$, then $L \leftarrow L \cup \mathcal{T}'_i$; otherwise, break.
- 6: end for

Output: selected data L for multitask finetuning.

Experiments: Few-shot Vision tasks

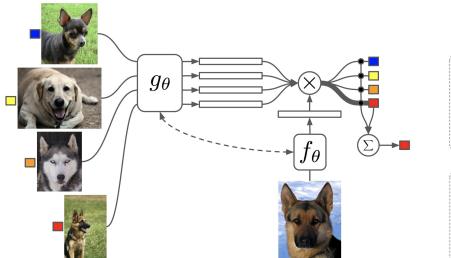
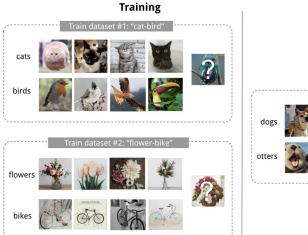


Figure 1: Matching Networks architecture



Testing

Experiments: Verification of Theoretical Analysis

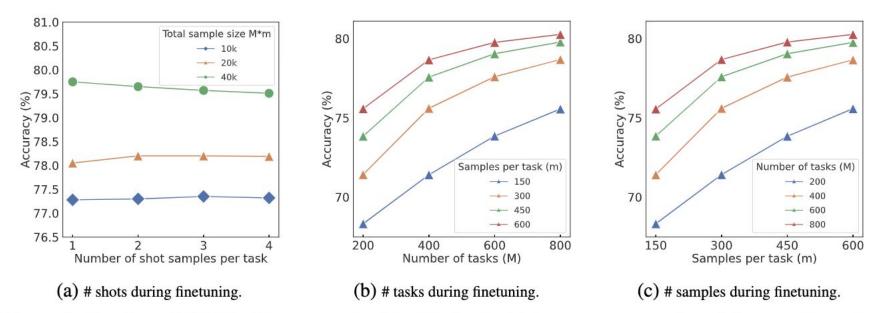


Figure 3: Results on ViT-B backbone pretrained by MoCo v3. (a) Accuracy v.s. number of shots per finetuning task. Different curves correspond to different total numbers of samples Mm. (b) Accuracy v.s. the number of tasks M. Different curves correspond to different numbers of samples per task m. (c) Accuracy v.s. number of samples per task m. Different curves correspond to different numbers of tasks M.

Experiments: Task selection algorithm

Pretrained	Selection	INet	Omglot	Acraft	CUB	QDraw	Fungi	Flower	Sign	COCO
CLIP	Random	56.29	65.45	31.31	59.22	36.74	31.03	75.17	33.21	30.16
	No Con.	60.89	72.18	31.50	66.73	40.68	35.17	81.03	37.67	34.28
	No Div.	56.85	73.02	32.53	65.33	40.99	33.10	80.54	34.76	31.24
	Selected	60.89	74.33	33.12	69.07	41.44	36.71	80.28	38.08	34.52
DINOv2	Random	83.05	62.05	36.75	93.75	39.40	52.68	98.57	31.54	47.35
	No Con.	83.21	76.05	36.32	93.96	50.76	53.01	98.58	34.22	47.11
	No Div.	82.82	79.23	36.33	93.96	55.18	52.98	98.59	35.67	44.89
	Selected	83.21	81.74	37.01	94.10	55.39	53.37	98.65	36.46	48.08
MoCo v3	Random	59.66	60.72	18.57	39.80	40.39	32.79	58.42	33.38	32.98
	No Con.	59.80	60.79	18.75	40.41	40.98	32.80	59.55	34.01	33.41
	No Div.	59.57	63.00	18.65	40.36	41.04	32.80	58.67	34.03	33.67
	Selected	59.80	63.17	18.80	40.74	41.49	33.02	59.64	34.31	33.86

Table 1: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone. No Con.: Ignore consistency. No Div.: Ignore diversity. Random: Ignore both consistency and diversity.

Experiments: Effectiveness of Multitask Finetuning

			miniImageNet		tieredIn	nageNet	DomainNet		
pretrained	backbone	method	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	
MoCo v3	ViT-B	Adaptation	75.33 (0.30)	92.78 (0.10)	62.17 (0.36)	83.42 (0.23)	24.84 (0.25)	44.32 (0.29)	
		Standard FT	75.38 (0.30)	92.80 (0.10)	62.28 (0.36)	83.49 (0.23)	25.10 (0.25)	44.76 (0.27)	
		Ours	80.62 (0.26)	93.89 (0.09)	68.32 (0.35)	85.49 (0.22)	32.88 (0.29)	54.17 (0.30)	
	ResNet50	Adaptation	68.80 (0.30)	88.23 (0.13)	55.15 (0.34)	76.00 (0.26)	27.34 (0.27)	47.50 (0.28)	
		Standard FT	68.85 (0.30)	88.23 (0.13)	55.23 (0.34)	76.07 (0.26)	27.43 (0.27)	47.65 (0.28)	
		Ours	71.16 (0.29)	89.31 (0.12)	58.51 (0.35)	78.41 (0.25)	33.53 (0.30)	55.82 (0.29)	
DINO v2	ViT-S	Adaptation	85.90 (0.22)	95.58 (0.08)	74.54 (0.32)	89.20 (0.19)	52.28 (0.39)	72.98 (0.28)	
		Standard FT	86.75 (0.22)	95.76 (0.08)	74.84 (0.32)	89.30 (0.19)	54.48 (0.39)	74.50 (0.28)	
		Ours	88.70 (0.22)	96.08 (0.08)	77.78 (0.32)	90.23 (0.18)	61.57 (0.40)	77.97 (0.27)	
	ViT-B	Adaptation	90.61 (0.19)	97.20 (0.06)	82.33 (0.30)	92.90 (0.16)	61.65 (0.41)	79.34 (0.25)	
		Standard FT	91.07 (0.19)	97.32 (0.06)	82.40 (0.30)	93.07 (0.16)	61.84 (0.39)	79.63 (0.25)	
		Ours	92.77 (0.18)	97.68 (0.06)	84.74 (0.30)	93.65 (0.16)	68.22 (0.40)	82.62 (0.24)	
Supervised	ViT-B	Adaptation	94.06 (0.15)	97.88 (0.05)	83.82 (0.29)	93.65 (0.13)	28.70 (0.29)	49.70 (0.28)	
pretraining		Standard FT	95.28 (0.13)	98.33 (0.04)	86.44 (0.27)	94.91 (0.12)	30.93 (0.31)	52.14 (0.29)	
on ImageNet		Ours	96.91 (0.11)	98.76 (0.04)	89.97 (0.25)	95.84 (0.11)	48.02 (0.38)	67.25 (0.29)	
	ResNet50	Adaptation	81.74 (0.24)	94.08 (0.09)	65.98 (0.34)	84.14 (0.21)	27.32 (0.27)	46.67 (0.28)	
		Standard FT	84.10 (0.22)	94.81 (0.09)	74.48 (0.33)	88.35 (0.19)	34.10 (0.31)	55.08 (0.29)	
		Ours	87.61 (0.20)	95.92 (0.07)	77.74 (0.32)	89.77 (0.17)	39.09 (0.34)	60.60 (0.29)	

Table 2: **Results of few-shot image classification.** We report average classification accuracy (%) with 95% confidence intervals on test splits. Adaptation: Direction adaptation without finetuning; Standard FT: Standard finetuning; Ours: Our multitask finetuning; 1-/5-shot: number of labeled images per class in the target task.

Experiments: Few-shot Language task

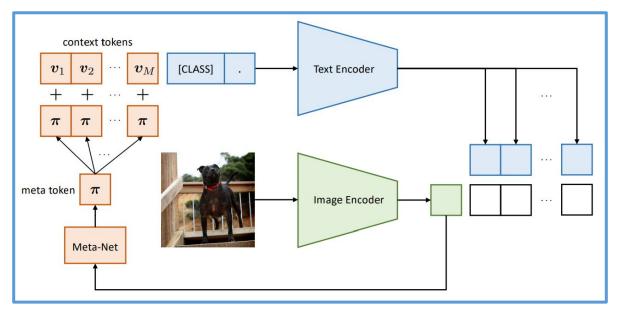
	SST-2	SST-5	MR	CR	MPQA	Subj	TREC	CoLA
	(acc)	(Matt.)						
Prompt-based zero-shot	83.6	35.0	80.8	79.5	67.6	51.4	32.0	2.0
Multitask FT zero-shot	92.9	37.2	86.5	88.8	73.9	55.3	36.8	-0.065
+ task selection	92.5	34.2	86.5	88.7	73.9	55.5 72.0	36.8	0.001
Prompt-based FT [†]	92.7 (0.9)	47.4 (2.5)	87.0 (1.2)	90.3 (1.0)	84.7 (2.2)	91.2 (1.1)	84.8 (5.1)	9.3 (7.3)
Multitask Prompt-based FT	92.0 (1.2)	48.5 (1.2)	86.9 (2.2)	90.5 (1.3)	86.0 (1.6)	89.9 (2.9)	83.6 (4.4)	5.1 (3.8)
+ task selection	92.6 (0.5)	47.1 (2.3)	87.2 (1.6)	91.6 (0.9)	85.2 (1.0)	90.7 (1.6)	87.6 (3.5)	3.8 (3.2)
	MNLI (acc)	MNLI-mm (acc)	SNLI (acc)	QNLI (acc)	RTE (acc)	MRPC (F1)	QQP (F1)	
Prompt-based zero-shot	50.8	51.7	49.5	50.8	51.3	61.9	49.7	
Multitask FT zero-shot	63.2	65.7	61.8	65.8	74.0	81.6	63.4	
+ task selection	62.4	64.5	65.5	61.6	64.3	75.4	57.6	
Prompt-based FT [†]	68.3 (2.3)	70.5 (1.9)	77.2 (3.7)	64.5 (4.2)	69.1 (3.6)	74.5 (5.3)	65.5 (5.3)	
Multitask Prompt-based FT	70.9 (1.5)	73.4 (1.4)	78.7 (2.0)	71.7 (2.2)	74.0 (2.5)	79.5 (4.8)	67.9 (1.6)	
+ task selection	73.5 (1.6)	75.8 (1.5)	77.4 (1.6)	72.0 (1.6)	70.0 (1.6)	76.0 (6.8)	69.8 (1.7)	

Table 18: **Results of few-shot learning with NLP benchmarks.** All results are obtained using RoBERTa-large. We report the mean (and standard deviation) of metrics over 5 different splits. †: Result in Gao et al. (2021a) in our paper; FT: finetuning; task selection: select multitask data from customized datasets.

[Gao et al.] Gao, Fisch, and Chen. Making pre-trained language models better few-shot learners. ACL'2020.

Future Work

- Does this multitask finetuning approach also work on multimodal tasks?
- Does our task selection algorithm apply?



CoCoOp

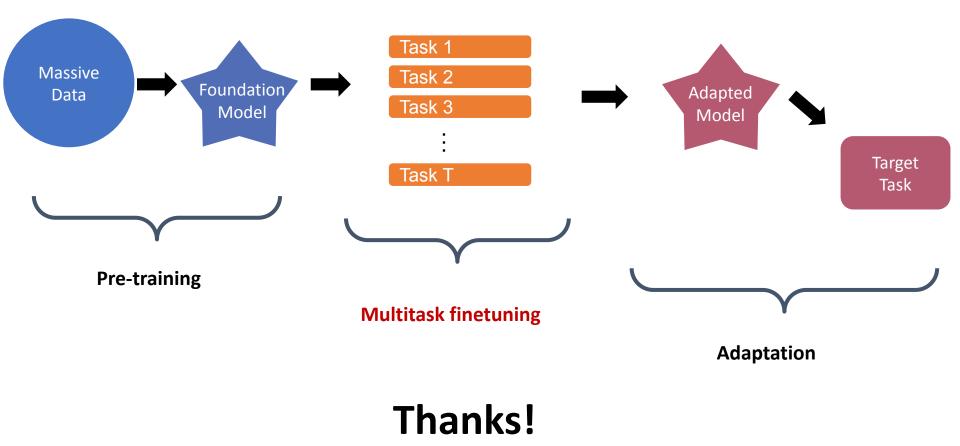
Figures from: Conditional Prompt Learning for Vision-Language Models, 2022.

Future Work

- Currently, generative models are a hot topic in research, attracting both theorists and practitioners. Does this framework apply to generative models as well?
 - Our theoretical framework mainly based on discriminative tasks. Can we derive similar conclusion for generative tasks? (In-context learning)

 Recent empirical achievements highlight the effectiveness of generative models in both natural language processing (e.g., GPT, Llama) and multimodal areas (e.g., Llava, GPT4-V). Is it possible to develop a task selection algorithm that better tailors these foundational models to a range of downstream tasks?

Take Home Message



Appendix

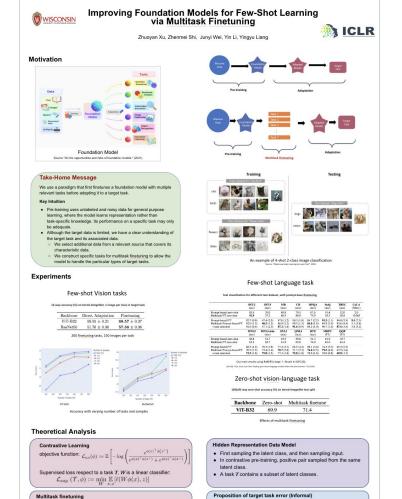
Our paper

Our slides

Appendix

Our Workshop Poster: link

Our Workshop Paper: link



Suppose we construct M tasks, each with m sample

 $\sum_{i=1}^{n} \ell\left(W_{i} \cdot \phi\left(x_{j}^{i}\right), z_{j}^{i}\right), \quad \text{s.t.} \quad \widehat{\mathcal{L}}_{un}(\phi) \leq \epsilon_{0}$

Suppose in pre-training we have target task error bounded by ϵ with high probability, our multitask fineutning reduce error on target task to $\alpha\epsilon$, where finetuning sample complexity is $\theta(1/\alpha\epsilon)$.

- Suppose target task is \mathcal{T}_0
- Let $\phi^* \in \Phi$ denote the model with the lowest target task loss $\mathcal{L}_{sup}(\mathcal{T}_0, \phi^*)$
- We want to bound $\mathcal{E}(\phi) = \mathcal{L}_{\sup} (\mathcal{T}_0, \phi) \mathcal{L}_{\sup} (\mathcal{T}_0, \phi^*)$
- Pretraining loss as $\hat{\mathcal{L}}_{\mathrm{pre}} \left(\hat{\phi} \right)$

Theorem 1 (Contrastive pre-training loss (Informal)) Suppose in pre-training we have $\hat{\mathcal{L}}_{\text{pre}}(\hat{\phi}) \leq \epsilon_0$, and $\tau := \Pr_{(y_1, y_2) \sim \eta^2} \{y_1 = y_2\}$ then:

$$\mathcal{L}_{\sup}\left(\mathcal{T}_{0},\hat{\phi}\right) - \mathcal{L}_{\sup}\left(\mathcal{T}_{0},\phi^{*}\right) \leq \mathcal{O}\left(\frac{2\epsilon_{0}}{1-\tau}\right)$$

- Suppose target task is $\,\mathcal{T}_{0}\,$
- We want to bound \mathcal{L}_{\sup} $(\mathcal{T}_0,\phi) \mathcal{L}_{\sup}$ (\mathcal{T}_0,ϕ^*)

Theorem 2 (Multitask finetuning loss (Informal)) Suppose we solve multitask finetuning optimization with empirical loss smaller than $\epsilon_1 = \frac{\alpha}{3} \frac{2\epsilon_0}{1-\tau}$ and obtain ϕ' . If $\tilde{\epsilon} = \hat{\mathcal{L}}_{pre} (\phi')$: $M \ge \Omega \left(\frac{1}{\epsilon_1} \left[\mathcal{R}_M (\Phi(\tilde{\epsilon})) + \frac{1}{\epsilon_1} \log\left(\frac{1}{\delta}\right) \right] \right), \quad Mm \ge \Omega \left(\frac{1}{\epsilon_1} \left[\mathcal{R}_{Mm} (\Phi(\tilde{\epsilon})) + \frac{1}{\epsilon_1} \log\left(\frac{1}{\delta}\right) \right] \right)$ Then with prob $1 - \delta$,

$$\mathcal{L}_{\sup} (\mathcal{T}_0, \phi') - \mathcal{L}_{\sup} (\mathcal{T}_0, \phi^*) \le \mathcal{O}\left(\alpha \frac{2\epsilon_0}{1-\tau}\right)$$

Experiments: zero-shot vision language task

160(all)-way zero-shot accuracy (%) on tiered-ImageNet test split

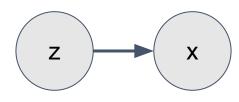
Backbone	Zero-shot	Multitask finetune
ViT-B32	69.9	71.4

Effects of multitask finetuning

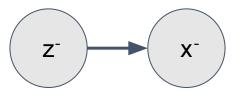
Problem Setup - Contrastive pre-training

- $(z, z^-) \sim \eta^2$, $x, x^+ \sim \mathcal{D}(z), x^- \sim \mathcal{D}(z^-)$
- Contrastive loss:

$$\mathbb{E}\left[-\log\left(\frac{e^{\phi(x)^{\top}\phi(x^{+})}}{e^{\phi(x)^{\top}\phi(x^{+})} + e^{\phi(x)^{\top}\phi(x^{-})}}\right)\right]$$

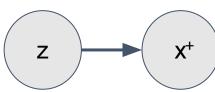


positive pair



negative pair

Data Model Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



- Suppose target task is $\,\mathcal{T}_{0}\,$
- We want to bound $\mathcal{L}_{sup}(\mathcal{T}_0,\phi)$
- let $\,\zeta\,$ denote the conditional distribution of $\,(z_1,z_2)\sim\eta^2\,$ conditioned on $\,z_1
 eq z_2$

$\begin{aligned} \textbf{Definition 1 (Averaged representation difference)} \\ \bar{d}_{\zeta}(\phi, \tilde{\phi}) &:= \mathop{\mathbb{E}}_{\mathcal{T} \sim \zeta} \left[\mathcal{L}_{sup}(\mathcal{T}, \phi) - \mathcal{L}_{sup}(\mathcal{T}, \tilde{\phi}) \right] = \mathcal{L}_{sup}(\phi) - \mathcal{L}_{sup}(\tilde{\phi}) \end{aligned}$

Definition 2 (worst-case representation difference)

$$d_{{\mathcal C}_0}(\phi, ilde{\phi}):=\sup_{{\mathcal T}_0\subseteq {\mathcal C}_0} \left[{\mathcal L}_{ ext{sup}} \ \left({\mathcal T}_0, \phi
ight) - {\mathcal L}_{ ext{sup}} \ \left({\mathcal T}_0, ilde{\phi}
ight)
ight]$$

 (ν, ϵ) -diversity: For any $\phi, \tilde{\phi} \in \Phi$, $d_{\mathcal{C}_0}(\phi, \tilde{\phi}) \leq \bar{d}_{\zeta}(\phi, \tilde{\phi})/\nu + \epsilon$

- Suppose target task is \mathcal{T}_0
- let $\,\zeta\,$ denote the conditional distribution of $\,(z_1,z_2)\sim\eta^2\,$ conditioned on $\,z_1
 eq z_2$
- (ν,ϵ) -diversity: For any $\phi, \tilde{\phi} \in \Phi$, $d_{\mathcal{C}_0}(\phi, \tilde{\phi}) \leq \bar{d}_{\zeta}(\phi, \tilde{\phi})/\nu + \epsilon$
- Suppose there is ϕ^* such that supervised loss are small across all tasks

Theorem 1 (Contrastive pre-training loss(baseline)) Suppose in pre-training we have $\hat{\mathcal{L}}_{un}(\hat{\phi}) \leq \epsilon_0$, then:

$$\mathcal{L}_{sup}(\mathcal{T}_0, \hat{\phi}) - \mathcal{L}_{sup}(\mathcal{T}_0, \phi^*) \le \frac{1}{\nu} \left[\frac{1}{1 - \tau} (2\epsilon_0 - \tau) - \mathcal{L}_{sup}(\phi^*) \right] + \epsilon$$

- Suppose target task is $\,\mathcal{T}_{0}\,$
- let ζ denote the conditional distribution of $(z_1,z_2)\sim\eta^2$ conditioned on $z_1
 eq z_2$
- (ν,ϵ) -diversity: For any $\phi, \tilde{\phi} \in \Phi, d_{\mathcal{C}_0}(\phi, \tilde{\phi}) \leq \bar{d}_{\zeta}(\phi, \tilde{\phi})/\nu + \epsilon$

Theorem 2 (Multitask finetuning loss(Ours))

Suppose we solve multitask finetuning optimization with empirical loss smaller than $\epsilon_1 = \frac{\alpha}{3} \frac{1}{1-\tau} (2\epsilon_0 - \tau)$ and got ϕ' . If: $M \ge \Omega \left(\frac{1}{\epsilon_1} \left[\mathcal{R}_M (\Phi(\epsilon_0)) + \frac{1}{\epsilon_1} \log\left(\frac{1}{\delta}\right) \right] \right)$, $Mm \ge \Omega \left(\frac{1}{\epsilon_1} \left[\mathcal{R}_{Mm} (\Phi(\epsilon_0)) + \frac{1}{\epsilon_1} \log\left(\frac{1}{\delta}\right) \right] \right)$

Then with prob $1-\delta$,

$$\mathcal{L}_{sup}(\mathcal{T}_0, \phi') - \mathcal{L}_{sup}(\mathcal{T}_0, \phi^*) \le \frac{1}{\nu} \left[\alpha \frac{1}{1 - \tau} (2\epsilon_0 - \tau) - \mathcal{L}_{sup}(\phi^*) \right] + \epsilon$$

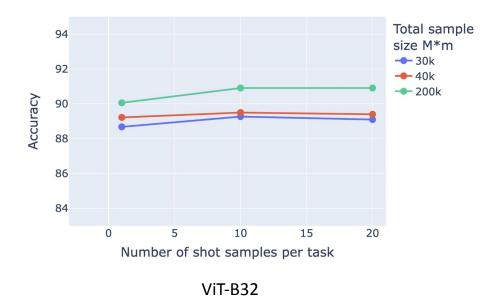
Remark

• Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce error on target task by $\frac{1}{\nu} \left[(1-\alpha) \frac{1}{1-\tau} (2\epsilon_0 - \tau) \right]$ where finetuning sample complexity is $\Theta\left(\frac{1}{\alpha\epsilon_0}\right)$

• Comparing to traditional supervised learning, self-supervised pre-training reduce error by $O\left(\frac{1}{Mm}\left[\mathcal{R}_{Mm}(\Phi) - \mathcal{R}_{Mm}\left(\Phi(\epsilon_0)\right)\right]\right)$

Experiments: Few-shot Vision tasks

5-way accuracy (%) on *mini-ImageNet*, 1/10/20 image per class in target task



Accuracy with varying number shot images