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New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning — pre-training + adaptation

Figure 1: Matching Networks architecture

Adaptation of a pre-trained image encoder
Figures from: Matching Networks for One Shot Learning, 2017.



New Paradigm: Pre-trained Representations

Paradigm shift: supervised learning — pre-training + adaptation

Circulation revenue has increased by 5% Circulation revenue has increased by
in Finland. // Positive 5% in Finland. // Finance

Panostaja did not disclose the purchase They defeated ... in the NFC

price. // Neutral Championship Game. // Sports

Paying off the national debt will be Apple ... development of in-house
extremely painful. // Negative chips. // Tech

The company anticipated its operating The company anticipated its operating
profit to improve. // profit to improve. //

Adaptation of a pre-trained language decoder

Figures from: How does in-context learning work? A framework for understanding the differences from traditional supervised learning, 2022.
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What does pre-training look like?

e Supervised learning

e Self-supervised learning:

O

Next sentence prediction (BERT)

Masked language prediction (BERT, RoBERTa)

Auto-regressive language modeling (GPT, Llama)

Contrastive learning (SimCLR, SimCSE, CLIP, DINO)



Intro - Contrastive Learning
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h; <— Representation —» h;

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

SimCLR - (Image, Image) Image Data Augmentation
N o hee d | 3 b el S Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020

Figures from: A Simple Framework for Contrastive Learning of Visual Representations, 2020



Intro - Foundation Model

OpenAl’s
CLIP Model

The history and evolution of foundation models

Figures from: A Comprehensive Survey on Pretrained Foundation Models: A History from BERT to ChatGPT, 2023.



Intro - Foundation Model
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Figures from: On the opportunities and risks of foundation models, 2021.
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Few-Shot Learning:
Pretraining + Fine Tuning
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Figures from: On the opportunities and risks of foundation models, 2021.

Label Efficiency

Figures from: https://www.youtube.com/watch?v=U6uFOIURcDO&ab_channel=ShusenWang, 2020



https://www.youtube.com/watch?v=U6uFOIURcD0&ab_channel=ShusenWang

Paradigm: Pre-training + Adaptation
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Pre-training + Finetuning + Adaptation

— viodel @

Massive
Data ‘ Foundation

Adapted

Target
N\ J
Y N\ J
Y
Pre-training \\ Y/

%

Adaptation

Multitask finetuning



e

e mmmm e ———

Training Testing

Train dataset #1: “cat-bird”
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An example of 4-shot 2-class image classification

Figures from: Meta-Learning: Learning to Learn Fast, 2018.



https://lilianweng.github.io/posts/2018-11-30-meta-learning/

Problem Setup - Hidden representation data

e Class y € C overdistribution ¥ ~ 1)
e Task 7T =

e 9oc
o g(r)

(y1,-.-,yx) € C, sample x ~ D(y)

hypothesis class of representation functions, e.g. ResNet, ViT

= Wo(x) as prediction logits of latent class

y —» x —» ¢(x) —» g(x) —> loss
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Problem Setup - Objective for a downstream task

e Class y € C overdistribution ¥ ~ 1)
o Task 7 ={yi,y2} CC ,instance z ~ D(y)
° g(a’;) — qu(g:) as prediction logits of latent class

® supervised loss w.r.t a task:

Low (T,0) :=min E_E_[(W(z),y) T

W y~Txz~D(y)

y —» x —» ¢(X) —» g(x) —>» loss J



Pretraining - Contrastive learning

o (y,y7) ~ 0 wat ~ Dy, ~D(y"), 7= BT ly=y"}

1 cb(@) o(a™)
T8 6@ T @) 1 b@) (@)

e Contrastive loss:

E

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



Pretraining - Contrastive learning

o (y)y‘) ~n? 2T ~D(z), 27 ~D(z7)

e Contrastive loss: Econ_pm(gb) — [gu (¢(x)—|_ (qb (:E+) = gb (:C_)))]
[ ($(@)" (¢ () — ¢ (27)))]

will recover the contrastive loss in
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Pretraining - Supervised learning
* Yy~n. x~Dy)
® supenvised losst ((g(x), y) = bu ((9(2))y — (9(2))y 2y,pec)

Esup—pre(¢) — mwi/n Em,y[€<W¢(x)v y)]

e |Inparticular: £, (v) = log(1 4 exp(—wv)) will recover the logistic loss

To simplify notation, we will use L,rc(¢) , we denote pretrained model as ¢



Problem Setup - Multitask Finetuning

® Suppose we construct M tasks {71, 72,...,Tar}

® Suppose each task with m sample S; 1= {(x;,y;) ] E [m]}

e Given pretrainequb We further multitask finetune it by objective:

glelfbl M Zﬁsup Za(b

/

~ ~ N\
OO S ®)
\\ } / /

~ /

where Esup (7i,¢) == min —



Diversity and Consistency

Definition 1 (Diversity and Consistency (Informal))

Consider the latent feature space of target task data and finetuning task
data. Diversity refer to the coverage of the finetuning tasks on the
target task in the latent feature space. Consistency refer to similarity in
the feature space.

kg d-}(c @
e Suppose target task is 7 : "

Co !




Main Result

® Suppose target task is 7
o let ¢* & ® denote the model with the lowest target task loss  Lsup (7o, @)

e We want to bound 5(¢) sup (767¢) sup (767¢ )

e Pretraining loss as »CApre (Cb)

Theorem (Multitask finetuning loss (Informal))

Suppose in pretraining we have empirical pretraining loss ... (¢) <
The error will be £(¢) < O(e) . After sufficient multitask finetuning and
get @', the error will be E(¢") < O(aep) With high probability. The

finetuning sample complexity will be o (L ).

(878}




Remark

e Comparing to pretraining + adaptation (baseline), the multitask fineutning procedure

2€ 1
reduce error on target task by (1 —«) 1 _OT with required sample complexity € (@—60)
e |deally, data from the finetuning tasks should satisfy two requirements:
o Consistency: finetuning tasks similar the target task,
o Diversity: finetuning tasks are sufficiently diverse to cover a wide range of

patterns that may be encountered in the target task.



Practical solution: Task selection
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Practical solution: Task selection

Algorithm 1 Consistency-Diversity Task Selection

Input: Target task 7y, candidate finetuning tasks: {71, 72, ..., Ta }, model ¢, threshold p.

: Compute ¢(7;) and p; fori =0,1,..., M.
2: Sort 7;’s in descending order of similarity (7o, 7;). Denote the sorted list as {77, 75, ..., T5s}-
3. L+ {T{}
4: fori=2,...,M do
5.  If coverage(L U T/;Ty) > (1 + p) - coverage(L; Tp), then L <— L U T;; otherwise, break.
6: end for

Output: selected data L for multitask finetuning.

[




Experiments: Few-shot Vision tasks
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Figure 1: Matching Networks architecture



Experiments: Verification of Theoretical Analysis
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Figure 3: Results on ViT-B backbone pretrained by MoCo v3. (a) Accuracy v.s. number of shots per finetuning
task. Different curves correspond to different total numbers of samples Mm. (b) Accuracy v.s. the number of

tasks M. Different curves correspond to different numbers of samples per task m. (c) Accuracy v.s. number of
samples per task m. Different curves correspond to different numbers of tasks M.



Experiments: Task selection algorithm

Pretrained Selection INet Omglot Acraft CUB QDraw Fungi Flower Sign COCO

CLIP Random 56.29  65.45 31.31 5922 3674 3103 15.07 3321 30.16
NoCon. 60.89  72.18 31.50 66.73  40.68 35.17 81.03 37.67 34.28
NoDiv. 56.85  73.02 3253 6533 4099 33.10 80.54 3476 31.24
Selected 60.89  74.33 3312 69.07 4144 36.71 80.28 38.08 34.52

DINOv2 Random 83.05 62.05 36.75 9375 3940 52.68 98.57 31.54 47.35
NoCon. 8321  76.05 36.32 9396 50.76  53.01 98.58 3422 47.11
NoDiv. 82.82  79.23 36.33 9396 55.18 5298 98.59 35.67 44.89
Selected 83.21  81.74 3701 94.10 5539 5337 98.65 3646 48.08

MoCo v3 Random 59.66  60.72 18.57 39.80 4039 3279 5842 3338 3298
NoCon. 59.80 60.79 18.75 40.41 4098 3280 5955 3401 3341
NoDiv. 59.57 63.00 18.65 4036 41.04 3280 58.67 34.03 33.67
Selected 59.80  63.17 18.80 40.74 4149 33.02 59.64 3431 33.86

Table 1: Results evaluating our task selection algorithm on Meta-dataset using ViT-B backbone. No Con.:
Ignore consistency. No Div.: Ignore diversity. Random: Ignore both consistency and diversity.



Experiments: Effectiveness of Multitask Finetuning

minilmageNet tieredImageNet DomainNet

pretrained backbone method 1-shot S-shot 1-shot S-shot 1-shot S-shot
MoCo v3 ViT-B Adaptation 75.33 (0.30) 92.78 (0.10) 62.17 (0.36) 83.42(0.23) 24.84 (0.25) 44.32(0.29)
Standard FT  75.38 (0.30) 92.80 (0.10) 62.28 (0.36) 83.49 (0.23) 25.10(0.25) 44.76 (0.27)
Ours 80.62 (0.26) 93.89 (0.09) 68.32(0.35) 85.49(0.22) 32.88(0.29) 54.17 (0.30)
ResNet50  Adaptation 68.80 (0.30) 88.23 (0.13) 55.15(0.34) 76.00 (0.26) 27.34(0.27) 47.50(0.28)
Standard FT  68.85 (0.30) 88.23 (0.13) 55.23(0.34) 76.07 (0.26) 27.43(0.27) 47.65 (0.28)
Ours 71.16 (0.29) 89.31(0.12) 58.51(0.35) 78.41(0.25) 33.53(0.30) 55.82(0.29)
DINO v2 ViT-S Adaptation 85.90 (0.22) 95.58 (0.08) 74.54(0.32) 89.20(0.19) 52.28 (0.39) 72.98 (0.28)
Standard FT ~ 86.75 (0.22) 95.76 (0.08) 74.84 (0.32) 89.30(0.19) 54.48 (0.39) 74.50 (0.28)
Ours 88.70 (0.22) 96.08 (0.08) 77.78 (0.32) 90.23 (0.18) 61.57 (0.40) 77.97 (0.27)
ViT-B Adaptation 90.61 (0.19) 97.20 (0.06) 82.33(0.30) 92.90 (0.16) 61.65 (0.41) 79.34 (0.25)
Standard FT  91.07 (0.19) 97.32 (0.06) 82.40 (0.30) 93.07 (0.16) 61.84 (0.39) 79.63 (0.25)
Ours 92.77 (0.18) 97.68 (0.06) 84.74 (0.30) 93.65(0.16) 68.22 (0.40) 82.62 (0.24)
Supervised ViT-B Adaptation 94.06 (0.15) 97.88 (0.05) 83.82(0.29) 93.65(0.13) 28.70 (0.29) 49.70 (0.28)
pretraining Standard FT  95.28 (0.13) 98.33 (0.04) 86.44 (0.27) 94.91(0.12) 30.93 (0.31) 52.14(0.29)
on ImageNet Ours 96.91 (0.11) 98.76 (0.04) 89.97 (0.25) 95.84 (0.11) 48.02 (0.38) 67.25(0.29)
ResNet50  Adaptation 81.74 (0.24) 94.08 (0.09) 65.98 (0.34) 84.14(0.21) 27.32(0.27) 46.67 (0.28)
Standard FT  84.10 (0.22) 94.81 (0.09) 74.48 (0.33) 88.35(0.19) 34.10(0.31) 55.08 (0.29)
Ours 87.61 (0.20) 95.92 (0.07) 77.74 (0.32) 89.77 (0.17) 39.09 (0.34) 60.60 (0.29)

Table 2: Results of few-shot image classification. We report average classification accuracy (%) with 95%
confidence intervals on test splits. Adaptation: Direction adaptation without finetuning; Standard FT: Standard
finetuning; Ours: Our multitask finetuning; 1-/5-shot: number of labeled images per class in the target task.



Experiments: Few-shot Language task

SST-2 SST-5 MR CR MPQA Subj TREC CoLA
(acc) (acc) (acc) (acc) (acc) (acc) (acc) (Matt.)
Prompt-based zero-shot 83.6 35.0 80.8 79.5 67.6 514 32.0 2.0
Multitask FT zero-shot 92.9 37.2 86.5 88.8 73.9 55.3 36.8 -0.065
+ task selection 92.5 34.2 87.1 88.7 71.8 72.0 36.8 0.001
Prompt-based FT* 92.7(0.9) 47425 87.0(1.2) 90.3(1.00 84.7(12.2) 91.2(1.1) 848(5.1) 93(7.3)
Multitask Prompt-based FT 92.0 (1.2) 48.5(1.2) 86.9(2.2) 90.5(1.3) 86.0(1.6) 89.9(29) 83.6(4.4) 5.1(3.8)
+ task selection 926(0.5) 47.1(23) 87.2(1.6) 91.6(09) 852(1.0) 90.7(1.6) 87.6(3.5) 3.8(3.2)
MNLI MNLI-mm SNLI QNLI RTE MRPC QQprP
(acc) (acc) (acc) (acc) (acc) (F1) (F1)
Prompt-based zero-shot 50.8 51.7 49.5 50.8 51.3 61.9 49.7
Multitask FT zero-shot 63.2 65.7 61.8 65.8 74.0 81.6 63.4
+ task selection 62.4 64.5 65.5 61.6 64.3 754 57.6
Prompt-based FT' 683(123) 705019 77.23.7) 645@.2) 69.13.6) 745(5.3) 655(.3)
Multitask Prompt-based FT 70.9 (1.5) 73.4(1.4) 78.72.0)0 71.7(2.2) 74.0(2.5) 79.54.8) 679(1.6)
+ task selection 73.5(1.6) 758(1.5) 774(1.6) 72.0(1.6) 70.0(1.6) 76.0(6.8) 69.8(1.7)

Table 18: Results of few-shot learning with NLP benchmarks. All results are obtained using ROBERTa-large.
We report the mean (and standard deviation) of metrics over 5 different splits. 7: Result in Gao et al. (2021a) in
our paper; FT: finetuning; task selection: select multitask data from customized datasets.

|Gao et al.] Gao, Fisch, and Chen. Making pre-trained language models better few-shot learners. ACL'2020.



Future Work

® Does this multitask finetuning approach also work on multimodal tasks?
® Does our task selection algorithm apply?

context tokens
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CoCoOp

Figures from: Conditional Prompt Learning for Vision-Language Models, 2022.



Future Work

e Currently, generative models are a hot topic in research, attracting both theorists and

practitioners. Does this framework apply to generative models as well?
o Our theoretical framework mainly based on discriminative tasks. Can we derive

similar conclusion for generative tasks? (In-context learning)

e Recent empirical achievements highlight the effectiveness of generative models in both
natural language processing (e.g., GPT, Llama) and multimodal areas (e.g., Llava,
GPT4-V). Is it possible to develop a task selection algorithm that better tailors these
foundational models to a range of downstream tasks?
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Improving Foundation Models for Few-Shot Learning

@WISCONS}L\! via Multitask Finetuning

Zhuoyan Xu, Zhenmei Shi, Junyi Wei, Yin Li, Yingyu Liang
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Take-Home Message

We use a paradigm that irstfinetunes a foundation model with multiple:
relevant tasks before adapting it to a target task.
Key Intuition
o Pro-traini o
leaming, where the model leams representation rather than
task-specific knowledge. Its performance on a specific task may only
be adequate.
Although the target data is limited, we have a clear understanding of
the target task and its associated data
B it from a relevant
characteristic data. |
© We construct specific tasks for multitask finetuning to allow the
model to hande the particular types of target tasks.

Experiments

Few-shot Vision tasks
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Few-shot Language task
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Effects of multtask finetuning

Contrastive Learning
objective function: £ (4

ool
e (e Condhdndll
E [-log | Smmeen T oot olem)

Supervised loss respect to a task T, Wis a linear classifier:
Lup (T.0) = min E[((Wo(x).2)]

Hidden Representation Data Model

 First sampling the latent class, and then sampling input.

 In contrastive pre-training, positive pair sampled from the same
latent class.

* Atask T contains a subset of latent classes.

Multitask finetuning
Suppose we construct M tasks, each with m sample

i
1 1 . o

: M m £ 5 5 3 < &

e 7 2 2 o) ), st Le@se

Proposition of target task error (Informal)
Suppose in pre-training we have target task error bounded by ¢
with high probability, our multitask fineutning reduce error on target
task o ae, where finetuning sample complexity is 6(1/ae).



https://docs.google.com/presentation/d/1e9Tm3c3NE181x8JL8Wk3jay4vfyim8eL/edit?usp=sharing&ouid=100781139020092094346&rtpof=true&sd=true
https://openreview.net/pdf?id=szNb8Hp3d3

Main Result

® Suppose target task is 7
o let ¢* & ® denote the model with the lowest target task loss  Lsup (7o, @)

e We want to bound 8(¢) sup (767¢) sup (767¢ )

e Pretraininglossas Lpre (¢)

Theorem 1 (Contrastive pre-training loss (Informal))
Suppose in pre-training we have ﬁpre (q@) < €y, and 7 := ( Pg {y1 = y2}
then: e

Lo (76:6) = Luw (Tor67) < 0 ({22 )

1—17



Main Result

® Suppose target task is 76

e \We want to bound Lsup (76,?5) e sup (767¢ )

Theorem 2 (Multitask finetuning loss (Informal))
Suppose we solve multitask flnetunmg optimization with empirical loss smaller
than ¢ = 222 and obtain ¢'. If & = L,,,.. (¢/):

—r

> [rw @ @)+ 1o (3)]), im0 (2 [Rum (0 @)+ 108 (5

Then with prob 1 — §,

1—7

sup (76 Cb) sup (767¢*) < O (Oﬁ 260 )



Experiments: zero-shot vision language task

160(all)-way zero-shot accuracy (%) on tiered-ImageNet test split

Backbone Zero-shot Multitask finetune
ViT-B32 69.9 71.4

Effects of multitask finetuning



Problem Setup - Contrastive pre-training
o (z,27)~n? z,2" ~D(z), 2 ~D(27)

1 cb(@) o(a™)
T8 @ T @) & pd@) (@)

e Contrastive loss:

E

Data Model

Figures from: Expanding Small-Scale Datasets with Guided Imagination, 2023



Main Result

® Suppose target task is 76
e Wewanttobound L, (70, ®)

e let ( denote the conditional distribution of (2, 25) ~ n? conditioned on 21 # 29

Definition 1 (Averaged representation difference)

JC(¢» é) = T@C [ﬁsup(Ta ¢) — Esup(Ta qg)] — Lsup(@ - Esuz9(¢)

Definition 2 (worst-case representation difference)

ey (6,8) = 5D | Loy (To,®) = Loup (T0,0)]

ToCCo

~

(v, €)-diversity: Forany ¢, ¢ € ®, de, (¢, ) < de (¢ (6, 0) v+ e



Main Result

® Suppose target task is 76
e let C denote the conditional distribution of (21,22) ~ n? conditioned on 21 7 22

e (v, ¢€)-diversity: Forany @, & c ®, de, (¢, gg) < JC(¢, &)/V + €

® Suppose there s ¢*such that supervised loss are small across all tasks

Theorem 1 (Contrastive pre-training loss(baseline))
Suppose in pre-training we have £,,,(¢) < o, then:

A 1 1
Esup(7B7¢) T Lsup(%7¢*) S —

vil—rT1

(260 — ’7') — Esup(¢*) + €



Main Result

Suppose target task is 76

let ¢ denote the conditional distribution of (z1,22) ~ 1? conditioned on 21 # 22
(v, €) -diversity: Forany ¢, & e ®, de, (0, gg) < JC(¢7 &)/V + €

Theorem 2 (Multitask finetuning loss(Ours))
Suppose we solve multitask finetuning optimization with empirical loss smaller
than ¢ = 21 (2¢, — 7) and got ¢’. If:

31—71

Mz (L R @)+ 2og(5)])  Mm>0 (é [RM’” (@ () +  og (§)D

Then with prob 1 — §,

‘Csup(%a ¢,) - Lsup(’ﬁ)a ¢*) S % |:OZL(2€O - T) - Esup(¢*)] + €

l1—171



Remark
e Comparing to pre-training + adaptation(baseline), our multitask fineutning reduce

v

error on target task by 1 /(1-a):2-(2¢ — T)]

where finetuning sample complexity is e (i>

a€g

e Comparing to traditional supervised learning, self-supervised pre-training reduce

errorby O ( Ryim(P) — Rayrm (@(60))])



Experiments: Few-shot Vision tasks

5-way accuracy (%) on mini-imageNet, 1/10/20 image per class in target task
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