

Why Larger Language Models Do In-context Learning Differently? 172 Zhenmei Shi, Junyi Wei, Zhuoyan Xu, Yingyu Liang

Background

Attention Mechanism in LLMs • Compute projections (key, value, query) $\mathbf{Q} = \mathbf{X} \mathbf{W}^Q, \mathbf{K} = \mathbf{X} \mathbf{W}^K, \mathbf{V} = \mathbf{X} \mathbf{W}^V$ • Compute attention scores using softmax on inner products • Compute the weighted sum of values weighted by attention $\left(\frac{\mathbf{Q}\mathbf{K}^{T}}{\sqrt{d_{k}}}\right)$ $\mathbf{Y} = \text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}$ • We consider the Linear Self-attention Networks (only one-layer attention, and remove softmax): Model size: rank r of the weight $f_{\mathrm{LSA},\theta}(\mathbf{E}) = \left[\mathbf{E} + \mathbf{W}^{PV} \mathbf{E} \cdot \frac{\mathbf{E}^\top \mathbf{W}^{KQ} \mathbf{E}}{\rho} \right]$ matrice

$\,$ ieorem (Optimal rank- r solution, informal)

ie optimal rank-r weight matrix W^{KQ} lies in S_r , the span of the $\mathsf{D}\text{-}r$ eigenvectors of the data covariance. It is the truncated version w rank approximation) of the optimal full-rank solution.

Motivation

Theorem (Behavior difference, special case and informal) For $r_1 < r_2$, let f_i be the optimal rank- r_1 model, and f_i be the optimal rank-r₂ model. Assume the true regression weight lies in S_{r1} . Let s be the projection of the true weight in S_{r1} .

$$
\mathcal{L}(f_2) - \mathcal{L}(f_1) \approx \frac{r_2 - r_1}{M} ||s||_D^2 + \frac{r_2 - r_1}{M} \sigma^2
$$

- Larger models are more sensitive to noise injected in-context
- We provide theoretical insights by analyzing two stylized settings
- Main insight: larger models cover more feature directions, but also covers more injected noise, thus are more sensitive to noise

On Machine Learning

Setup

- Consider random pick 2 dimension as XOR input
- Important features dimensions and less-important features dimensions
- Linear self-attention with ReLU MLP

$$
g(\mathbf{X}, \mathbf{y}, \mathbf{x}_q) = \sum_{i \in [m]} \mathbf{a}_i \sigma \left[\frac{\mathbf{y}^\top \mathbf{X}}{N} \mathbf{W}^{(i)} \mathbf{x}_q \right]
$$

- Consider Hinge Loss
- Number of heads to measure mode size

Theorem (Optimal solution for parity)

The optimal solution of smaller number of heads model will mainly encode the **important features**, while larger number of heads model will encode **all features**.

Theorem (Behavior difference for parity)

During evaluation, we can decompose the input into two parts: signal and noise. Both the larger model and smaller model can capture the signal part well. However, the smaller model has a much smaller influence from noise than the larger model.

Setup: In-context Learning and Linear Self-Attention

Main Results: ICL Linear Regression

Main Results: Sparse Parity Classification

- Further thoughts:
- How to ``regularize'' the model to be more robust in-context?
- The same insight can explain the scaling law of LLMs?

Take Home Messages