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●Novel adaptive inference MLLM framework adapt to compute budget and input content.

●Latency-aware scheduler and probabilistic modeling approach.

●Validated across benchmarks and models, integrates with token selection techniques.
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AdaLLaVA Training:

➢ Models: LLaVA 1.5, Mipha.   
➢ Training: Supervised finetuning with visual instruction data (665K).
➢ Metrics: Accuracy under different latency budget, latency adherence.
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Execution plan under different content

Execution plan under different budget
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Fixed model under different input

Same content with different compute budget

Can we make MLLM adaptive to varying compute 
resources and input contents?

The image shows a snowman holding 
a colorful egg.

The image shows a snowman holding 
a colorful ball.

The image is showing a painting or 
drawing of a snowy winter scene.

What is the image showing?
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AdaLLaVA

Conventional MLLM: Fixed footprint AdaLLaVA (Ours): Adaptive footprint with scheduler
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“ What is the image 
showing? “

“ What is the image 
showing? “

Qualitative results

Main results

Conclusions

“ What is the color of the shirt that the
man is wearing?“

60% latency budget

The man is wearing a yellow shirt.
flops                                                : 5.1T
prefill_time                                    : 0.05s
prefill_memory_consumption    : 8.0G

80% latency budget

The man is wearing a bright yellow shirt.
flops                                                : 6.7T
prefill_time                                    : 0.06s
prefill_memory_consumption    : 10.5G

100% latency budget

The shirt is yellow, matching the taxi.
flops          : 8.6T
prefill_time                     : 0.08s
prefill_memory_consumption    : 13.4G
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AdaLLaVA Probabilistic model:

Layer-level pruning Attention heads and neuron level skipping


