Computer Sciences Dept.

Cristian Estan

Thumbnail portrait
Backtracking Algorithmic Complexity Attacks Against a NIDS
Randy Smith, Cristian Estan, Somesh Jha
Best paper award ACSAC, December 2006

Network Intrusion Detection Systems (NIDS) have become crucial to securing modern networks. To be effective, a NIDS must be able to counter evasion attempts and operate at or near wire-speed. Failure to do so allows malicious packets to slip through a NIDS undetected. In this paper, we explore NIDS evasion through algorithmic complexity attacks. We present a highly effective attack against the Snort NIDS, and we provide a practical algorithmic solution that successfully thwarts the attack. This attack exploits the behavior of rule matching, yielding inspection times that are up to 1.5 million times slower than that of benign packets. Our analysis shows that this attack is applicable to many rules in Snort's ruleset, rendering vulnerable the thousands of networks protected by it. Our countermeasure confines the inspection time to within one order of magnitude of benign packets. Experimental results using a live system show that an attacker needs only 4.0 kbps of bandwidth to perpetually disable an unmodified NIDS, whereas all intrusions are detected when our countermeasure is used.

Paper in PDF and Postscript. The technical report version of this paper has a more details.

 
Computer Sciences | UW Home