com.sjm.machlearn.classifiers.neuralnets
Class BPNeuralNet
java.lang.Object
|
+--com.sjm.machlearn.util.MainClass
|
+--com.sjm.machlearn.classifiers.Classifier
|
+--com.sjm.machlearn.classifiers.neuralnets.BPNeuralNet
- public class BPNeuralNet
- extends Classifier
Method Summary |
double |
activate(double value)
|
Feature |
classify(Example example)
|
Classifier |
cloneClassifier()
|
double |
getAccuracy(double[][] testdata,
int[] exp)
|
double[] |
getError(double[] input,
double[] exp)
|
double |
getExampleWeight(Example example)
getExampleWeight() : Returns the weight of
an example for the class 0. |
protected double[] |
getOutput(double[] input)
|
protected double[] |
getOutput(Example input)
|
double |
getTotalError(double[] error)
|
double |
getTotalError(double[] input,
double[] exp)
|
void |
initializeWeights()
|
void |
initializeWeights(double min,
double max)
|
java.lang.String |
printClassifier()
|
void |
reportAccuracies(int epoch,
DataSet train,
DataSet tune)
|
void |
runEpoch(double[][] epoch_data,
double[][] exp)
|
void |
setParameter(int i,
java.lang.Object parameter)
|
void |
setTestSet(DataSet ts)
|
void |
train(DataSet trainingData)
train() : randomly pick 10%
of trainingdata for
tune set. |
void |
train(DataSet trainingData,
DataSet tuneData)
|
void |
trainExample(double[] input,
double[] exp_output)
|
void |
tune(DataSet trainingData,
java.lang.Object[] parameters)
|
Methods inherited from class com.sjm.machlearn.util.MainClass |
_internalError,
_internalError,
addDebugListener,
debugMesg,
debugMesg,
debugMesg,
debugMesg,
debugMesg,
debugMesg,
debugOff,
debugOn,
internalError,
internalError,
setDebug,
setDebugLevel |
Methods inherited from class java.lang.Object |
clone,
equals,
finalize,
getClass,
hashCode,
notify,
notifyAll,
toString,
wait,
wait,
wait |
whidden
protected DoubleMatrix whidden
woutput
protected DoubleMatrix woutput
feature_converter
protected BPFeatureVector feature_converter
ninputs
protected int ninputs
noutputs
protected int noutputs
nhidden
protected int nhidden
learn_rate
protected double learn_rate
trainepoch
protected int trainepoch
BPNeuralNet
public BPNeuralNet()
BPNeuralNet
public BPNeuralNet(double hpercent)
setTestSet
public void setTestSet(DataSet ts)
initializeWeights
public void initializeWeights()
initializeWeights
public void initializeWeights(double min,
double max)
getOutput
protected double[] getOutput(Example input)
getOutput
protected double[] getOutput(double[] input)
getError
public double[] getError(double[] input,
double[] exp)
getTotalError
public double getTotalError(double[] input,
double[] exp)
getTotalError
public double getTotalError(double[] error)
activate
public double activate(double value)
getExampleWeight
public double getExampleWeight(Example example)
- Description copied from class: Classifier
- getExampleWeight() : Returns the weight of
an example for the class 0.
Used for ROC curves.
Will be overidden.
- Overrides:
- getExampleWeight in class Classifier
train
public void train(DataSet trainingData,
DataSet tuneData)
throws java.lang.Exception
getAccuracy
public double getAccuracy(double[][] testdata,
int[] exp)
train
public void train(DataSet trainingData)
throws java.lang.Exception
- train() : randomly pick 10%
of trainingdata for
tune set.
- Overrides:
- train in class Classifier
reportAccuracies
public void reportAccuracies(int epoch,
DataSet train,
DataSet tune)
runEpoch
public void runEpoch(double[][] epoch_data,
double[][] exp)
throws java.lang.Exception
trainExample
public void trainExample(double[] input,
double[] exp_output)
classify
public Feature classify(Example example)
- Overrides:
- classify in class Classifier
tune
public void tune(DataSet trainingData,
java.lang.Object[] parameters)
printClassifier
public java.lang.String printClassifier()
- Overrides:
- printClassifier in class Classifier
cloneClassifier
public Classifier cloneClassifier()
- Overrides:
- cloneClassifier in class Classifier
setParameter
public void setParameter(int i,
java.lang.Object parameter)
- Overrides:
- setParameter in class Classifier