Public Types | |
typedef TKernel | Kernel |
Public Member Functions | |
void | BatchPredict (int learner_typeid, Dataset &testset, String predictedvalue_filename) |
Online batch classification for multiple testing vectors. | |
void | Init (int learner_typeid, const Dataset &dataset, datanode *module) |
SVM initialization. | |
void | InitTrain (int learner_typeid, const Dataset &dataset, datanode *module) |
Initialization(data dependent) and training for SVM learners. | |
void | LoadModelBatchPredict (int learner_typeid, Dataset &testset, String model_filename, String predictedvalue_filename) |
Load models from a file, and perform offline batch classification for multiple testing vectors. | |
double | Predict (int learner_typeid, const Vector &vector) |
SVM prediction for one testing vector. |
Class for SVM.
Definition at line 119 of file svm.h.
void SVM< TKernel >::BatchPredict | ( | int | learner_typeid, | |
Dataset & | testset, | |||
String | predictedvalue_filename | |||
) | [inline] |
Online batch classification for multiple testing vectors.
No need to load model file, since models are already in RAM.
Note: for test set, if no true test labels provided, just put some dummy labels (e.g. all -1) in the last row of testset
type id of the learner | ||
testing set | ||
file name of the testing data |
Definition at line 629 of file svm.h.
References Dataset::matrix(), Dataset::n_features(), Dataset::n_points(), and SVM< TKernel >::Predict().
Referenced by SVM< TKernel >::LoadModelBatchPredict(), and main().
void SVM< TKernel >::Init | ( | int | learner_typeid, | |
const Dataset & | dataset, | |||
datanode * | module | |||
) | [inline] |
SVM initialization.
labeled training set or testing set | ||
number of classes (different labels) in the data set | ||
module name |
Definition at line 220 of file svm.h.
References fx_param_double(), fx_param_int(), fx_submodule(), ArrayList< TElem >::Init(), Dataset::n_features(), Dataset::n_labels(), and Dataset::n_points().
Referenced by SVM< TKernel >::InitTrain(), and main().
void SVM< TKernel >::InitTrain | ( | int | learner_typeid, | |
const Dataset & | dataset, | |||
datanode * | module | |||
) | [inline] |
Initialization(data dependent) and training for SVM learners.
typeid of the learner | ||
number of classes (different labels) in the training set | ||
module name |
Definition at line 286 of file svm.h.
References SVM< TKernel >::Init().
Referenced by main().
void SVM< TKernel >::LoadModelBatchPredict | ( | int | learner_typeid, | |
Dataset & | testset, | |||
String | model_filename, | |||
String | predictedvalue_filename | |||
) | [inline] |
Load models from a file, and perform offline batch classification for multiple testing vectors.
type id of the learner | ||
testing set | ||
name of the model file | ||
name of the file to store classified labels |
Definition at line 662 of file svm.h.
References SVM< TKernel >::BatchPredict().
Referenced by main().
double SVM< TKernel >::Predict | ( | int | learner_typeid, | |
const Vector & | datum | |||
) | [inline] |
SVM prediction for one testing vector.
type id of the learner | ||
testing vector |
Definition at line 511 of file svm.h.
Referenced by SVM< TKernel >::BatchPredict().