This file contains the program to estimate Hidden Markov Model parameter using training sequences. More...
Go to the source code of this file.
Functions | |
int | main (int argc, char *argv[]) |
success_t | train_baumwelch () |
success_t | train_baumwelch_discrete () |
success_t | train_baumwelch_gaussian () |
success_t | train_baumwelch_mixture () |
success_t | train_viterbi () |
success_t | train_viterbi_discrete () |
success_t | train_viterbi_gaussian () |
success_t | train_viterbi_mixture () |
void | usage () |
Variables | |
const fx_module_doc | hmm_train_main_doc |
const fx_entry_doc | hmm_train_main_entries [] |
const fx_submodule_doc | hmm_train_main_submodules [] |
This file contains the program to estimate Hidden Markov Model parameter using training sequences.
It use two algorithm: Baum-Welch (EM) and Viterbi
Usage: train --type=TYPE --profile=PROFILE --seqfile=FILE [OPTIONS] See the usage() function for complete option list
Definition in file train.cc.
const fx_module_doc hmm_train_main_doc |
const fx_entry_doc hmm_train_main_entries[] |
{ {"type", FX_REQUIRED, FX_STR, NULL, " HMM type : discrete | gaussian | mixture.\n"}, {"algorithm", FX_PARAM, FX_STR, NULL, " Training algoritm: baumwelch | viterbi.\n"}, {"seqfile", FX_REQUIRED, FX_STR, NULL, " Output file for the data sequences.\n"}, {"guess", FX_PARAM, FX_STR, NULL, " File containing guessing HMM model profile.\n"}, {"numstate", FX_PARAM, FX_INT, NULL, " If no guessing profile specified, at least provide the number of states.\n"}, {"profile", FX_REQUIRED, FX_STR, NULL, " Output file containing trained HMM profile.\n"}, {"maxiter", FX_PARAM, FX_INT, NULL, " Maximum number of iterations, default = 500.\n"}, {"tolerance", FX_PARAM, FX_DOUBLE, NULL, " Error tolerance on log-likelihood as a stopping criteria.\n"}, FX_ENTRY_DOC_DONE }
const fx_submodule_doc hmm_train_main_submodules[] |