This file contains the program to estimate Hidden Markov Model parameter using training sequences. More...
Go to the source code of this file.
Functions | |
| int | main (int argc, char *argv[]) |
| success_t | train_baumwelch () |
| success_t | train_baumwelch_discrete () |
| success_t | train_baumwelch_gaussian () |
| success_t | train_baumwelch_mixture () |
| success_t | train_viterbi () |
| success_t | train_viterbi_discrete () |
| success_t | train_viterbi_gaussian () |
| success_t | train_viterbi_mixture () |
| void | usage () |
Variables | |
| const fx_module_doc | hmm_train_main_doc |
| const fx_entry_doc | hmm_train_main_entries [] |
| const fx_submodule_doc | hmm_train_main_submodules [] |
This file contains the program to estimate Hidden Markov Model parameter using training sequences.
It use two algorithm: Baum-Welch (EM) and Viterbi
Usage: train --type=TYPE --profile=PROFILE --seqfile=FILE [OPTIONS] See the usage() function for complete option list
Definition in file train.cc.
| const fx_module_doc hmm_train_main_doc |
| const fx_entry_doc hmm_train_main_entries[] |
{
{"type", FX_REQUIRED, FX_STR, NULL,
" HMM type : discrete | gaussian | mixture.\n"},
{"algorithm", FX_PARAM, FX_STR, NULL,
" Training algoritm: baumwelch | viterbi.\n"},
{"seqfile", FX_REQUIRED, FX_STR, NULL,
" Output file for the data sequences.\n"},
{"guess", FX_PARAM, FX_STR, NULL,
" File containing guessing HMM model profile.\n"},
{"numstate", FX_PARAM, FX_INT, NULL,
" If no guessing profile specified, at least provide the number of states.\n"},
{"profile", FX_REQUIRED, FX_STR, NULL,
" Output file containing trained HMM profile.\n"},
{"maxiter", FX_PARAM, FX_INT, NULL,
" Maximum number of iterations, default = 500.\n"},
{"tolerance", FX_PARAM, FX_DOUBLE, NULL,
" Error tolerance on log-likelihood as a stopping criteria.\n"},
FX_ENTRY_DOC_DONE
}
| const fx_submodule_doc hmm_train_main_submodules[] |
1.6.3