#include <HuberData.h>
Inheritance diagram for HuberData:

Public Methods | |
| HuberData (int nobservations_in, int npredictors_in, double cutoff, double *X=0, double *y=0) | |
| ~HuberData () | |
| virtual void | XtMult (double beta, SimpleVector &y, double alpha, SimpleVector &x) |
| virtual void | XtTransMult (double beta, SimpleVector &y, double alpha, SimpleVector &x) |
| virtual double | datanorm () |
| virtual void | print () |
Static Public Methods | |
| HuberData * | textInput (char filename[], double cutoff, int &iErr) |
Public Attributes | |
| int | m |
| int | n |
| DenseGenMatrixHandle | Xt |
| SimpleVectorHandle | Y |
| double | cutoff |
| int | nobservations |
| int | npredictors |
|
||||||||||||||||||||||||
|
make data object using data structures already allocated |
|
|
destructor |
|
|
compute the norm of the problem data Implements Data. |
|
|
print the problem data Implements Data. |
|
||||||||||||||||
|
reads problem data from a text file.
|
|
||||||||||||||||||||
|
performs operation y <- beta*y + alpha*Xt*x |
|
||||||||||||||||||||
|
performs operation y <- beta*y + alpha*Xt^T*x; that is, y <- beta*y + alpha*X*x |
|
|
cutoff parameter: value at which the loss function turns from a least-squares function into an absolute-value function |
|
|
dimensions of the equivalent LCP reformulation of the Huber regression problem |
|
|
dimensions of the equivalent LCP reformulation of the Huber regression problem |
|
|
number of observations |
|
|
number of predictors |
|
|
store the transpose of the matrix X as a dense matrix. Dimensions of Xt are npredictors x nobservations |
|
|
right-hand side (targets) |
1.2.18