[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

danh sa'ch ba'o cu?a TS Tuye^'n. Math Review.




Hi all,

Tha^'y ca'c ba'c quan ta^m dde^'n chuye^.n TS Nguye^~n Xua^n Tuye^'n,
to^i dda(ng le^n dda^y danh sa'ch nhu+~ng ba`i ba'o cu?a TS Nguye^~n
Xua^n Tuye^'n. To^?ng co^.ng go^`m 9 ba`i. Danh sa'ch na`y la^'y tu+`
Math Review (la` no+i co' ba`i review cu?a TS NHV Hu+ng). Math Review
co' danh sa'ch "ta^'t ca?" ca'c ba`i ba'o ve^` toa'n, du` lo+'n hay
nho?.

Xin cho+' nha^`m la^~n vie^.c review ba`i ba'o vo+'i vie^.c referee
ba`i ba'o.  Sau khi ba`i ba'o ddu+o+.c published, Math review nho+`
mo^.t expert ddo.c va` vie^'t va`i lo+`i ve^` ba`i na`y vo+'i mu.ch
ddi'ch: to'm ta('t ba`i ba'o dde^?  ddo^.c gia? tha^'y co' ne^n
nghie^n cu+'u ba`i ba'o na`y kho^ng. Co`n referee la` lu'c ba`i ba'o
go+?i dde^'n ban bie^n ta^.p, ban bie^n ta^.p go+?i dde^'n mo^.t
hoa(.c va`i expert dde^? xin y' kie^'n co' ne^n dda(ng kho^ng.

Co^ng vie^.c cu?a ngu+o+`i referee na(ng nho.c ho+n nhie^`u, vi` pha?i
ddo.c ta^'t  ca? mo.i chi tie^'t, kie^?m tra mo.i ti'nh toa'n xem co'
ddu'ng hay sai, va`  dda'nh gia' ta^`m quan tro.ng cu?a ke^'t
qua?\. Co`n ngu+o+`i vie^'t review, pha^`n lo+'n, chi? ddo.c lu+o+'c
qua xem ke^'t qua? chi'nh ro^`i to'm ta('c la.i\. Ngu+o+`i review
thi` ddu+o+.c 8 USD (ba(`ng Coupon) "dde^? mua cha'o a(n". Co`n
referee thi` kho^ng co'  ddo^`ng na`o, chi? co' "vinh du+." trong
tha^`m la(.ng.  (A^'y the^' ba'c na`o co' ma^'y ca'i thu+ ca'c toa`
soa.n go+?i dde^'n nho+` referee ba'o, lu'c qua My~ ra^'t co' gia'
tri.!) =


Ca'c ba`i review pha^`n lo+'n dde^`u co' tha'i ddo^. chung chung,
kho^ng khen  cu~ng kho^ng che^, kho^ng no'i cai hay, ca'i do+?. (Cho
ne^n ba'c Tie^'n Zu~ng che^ Math review).  Tuy nhie^n cu~ng co'
tru+o+`ng ho+.p  che^ tha^.m te^., phi?  ba'ng nhau. Cu~ng kho^ng i't
tru+o+`ng ho+.p ba`i review ti`m ra cho^~ sai,  hoa(.c chi? ra ra(`ng
ke^'t qua? dda~ duo+.c ngu+o+`i ta co^ng bo^' tru+o+'c  ro^`i --
nhu+~ng ddie^`u ma` ngu+o+`i referee (ly' tu+o+?ng) le~ ra pha?i
bie^'t.

9 ba`i ba'o cu?a TS Tuye^'n: 1 ba`i tie^'ng Anh (dda(ng ta.i Balan), 1
ba`i tie^'ng  Vie^.t, va` 7 ba`i tie^'ng Nga  dda(ng ta.i ca'c ta.p
chi', no'i nhe. nha`ng, la` kho^ng co' tie^'ng ta(m gi` la('m. Khoa
toa'n tru+o+`ng UC Berkeley (rank so^' 1 cu?a My~ trong cac Math
depts) co' thu+ vie^.n ra^'t to^'t, nhu+ng cu~ng kho^ng co' ca'c ta.p
chi' na`y.

Cu~ng kho^ng the^? dda'nh gia' ba`i ba'o chi? qua te^n ta.p chi'. TS
Tuye^'n lu'c ddo' la`m TS ta.i Tbilisi (Georgia, tu+'c Grudia), thi`
dda(ng ta.i ca'c ta.p chi' o+? Georgia cu~ng la` ho+.p ly'. Nhu+ng
ne^'u ba'c ta dda(ng ta.i ca'c ta.p chi' trung u+o+ng, co' tie^'ng,
thi` co' su+'c thuye^'t phu.c ho+n. =


Theo to^i bie^'t, TS NHV Hu+ng la` ho.c tro` cu?a GS Huy`nh Mu`i. Ca?
hai dde^`u dda~ co' nhu+~ng co^ng tri`nh ve^` chuye^n nga`nh na`y
ddu+o+.c tri'ch da^~n  (cited)  kha' nhie^`u, dda(.c bie^.t Vassiliev
trong ba`i ba'o RA^'T RA^'T no^?i tie^'ng cu?a o^ng ta ve^` cohomology
of discriminants (ba`i na`y mo+? ra
 nhie^`u hu+o+'ng mo+'i) co' tri'ch da^~n 2 ba`i ba'o cu?a TS
NHVHu+ng.  Nha` toa'n ho.c no^?i tie^'ng cu?a Pha'p Cartier khi no'i
ve^` braid groups (ra^'t ga^`n vo+'i alternating groups) co' nha('c
dde^'n  Huy`nh Mu`i.
 =

Tho+`i ha.n la`m TS cu?a TS Tuye^'n ta.i Tbilisi la` 88-90. Va^.y
cha('c ca'c ba`i ba'o so^' 1,2,3 du+o+'i dda^y la` pha^`n chu? lu+.c
cu?a lua^.n a'n, hay i't ra la` mo^.t pha^`n ra^'t lo+'n. Ba`i so^' 2
va 3 la` announcements (chi? 2-3 trang), cha('c ba`i so^' 1
la` ba`i da`i tri`nh ba`y chi tie^'t ca'c ke^'t qua? cu?a ba`i 2,3.  =


Theo lo+`i cu?a Stefan Jackowski, ngu+o+`i review ba`i so^' 3, thi` TS
Tuye^'n co' xem mo^.t trong ca'c ke^'t qua? cu?a mi`nh nhu+ la` ddo^'i
nga^~u  (dual) cu?a mo^.t ke^'t qua? cu?a Huynh Mui. To^i kho^ng co'
ba`i ba'o trong tay ne^n kho^ng ro~ chi tie^'t  la('m.  O+? VN,
nguo+`i la`m toa'n bie^'t nhau ca?. Ne^'u la`m trong cu`ng nga`nh he.p
thi` cha('c la` pha?i bie^'t ke^'t qua? cu?a nhau chu+' kho^ng the^?
vi` thie^'u communication.

Pha?i cha.y ddi lo gia^'y to+`-- lu'c kha'c se~ ta'n do'c tie^'p.

Thang =




Items Authored by: Nguen Suan Tuen

[1] 95j:20050 Nguen Suan Tuen On the cohomology of alternating groups
and its  application in topology. (Russian) Trudy
Tbiliss. Mat. Inst. Razmadze Akad.  Nauk Gruzii 97 (1992),
18--47. (Reviewer: Nguyen H. V.  Hung) 20J06 (55R40)

[2] 90a:20109 Nguen Suan Tuen Mod $2$ cohomology algebras of the
alternating groups. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 130
(1988), no. 1, 21--23.  (Reviewer: Jack Weinstein) 20J06

[3] 89f:20056 Nguen Suan Tuen Calculation of the homology algebras of
a class  of groups. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 126
(1987), no. 1, 25--27.  (Reviewer: Stefan Jackowski) 20J06 (20B35)

[4] 84j:18011 Nguy\cftil en Xu=E2n Tuy\cfac en On finite-order
extensions of  quasimodules. (Vietnamese) T\d ap ch=ED To=E1n h\d oc 10
(1982), no. 1, 27--32.  18G15 (16A62 18F20)

[5] 81h:20100 Nguy\tilcf en Xu=E2n Tuy=EAn On some exact sequences of
cohomology  of monoids. Bull. Acad. Polon. Sci. S=E9r. Sci. Math. 27
(1979), no. 7-8, 521--523 (1980).  (Reviewer: Charles Ching An Cheng)
20M50

[6] 57 #12651 Nguen Suan Tuen Some functorial properties of the
cohomology of  monoids. (Russian) Sakharth. SSR Mecn. Akad. Moambe 87
(1977), no. 2, 281--284.  (Reviewer: V. A. Artamanov) 18H40 (18H10
12G10)

[7] 56 #15736 Nguen Suan Tuen The cohomology of monoids. (Russian)
Sakharth. SSR  Mecn. Akad. Moambe 85 (1977), no. 3,
545--548. (Reviewer: W. T. van Est) 18H40 (18G10)

[8] 55 #3039 Nguen Suan Tuen Nonabelian extensions of
monoids. (Russian)  Sakharth. SSR Mecn. Akad. Moambe 84 (1976), no. 1,
37--39. (Reviewer: V. A.  Artamonov) 18H40 (20M10)

[9] 55 #3038 Nguen Suan Tuen Extensions of groups and
monoids. (Russian)  Sakharth. SSR Mecn. Akad. Moambe 83 (1976), no. 1,
25--28. (Reviewer: A. I.  Moskalenko) 18H40 (20M10)

=A9 Copyright American Mathematical Society 1997 =