[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

forwarded msg: Ve^` vu. GS Tuye^'n




Forwarded from a VNSA netter:
----------------------------

        Hi all,
 
       Toi co theo doi thao luan cua moi nguoi xung quanh su viec cua TS
Nguyen Xuan Tuyen. Thuc ra toi co ban khoan ngay tu dau la lieu rang ca Hoi
Dong cham luan an TS lai "de lo.t luoi" nhu vay hay sao, va de^? ro^`i
"quan ta" lai phat hien ra "quan minh"?
       Xem bai cua ba'c Thang va cua mot so ba'c kha'c va co mot so nhan
xet cung nhu vai cau hoi the nay:
       - Gia su GS Tuyen dua vao 9 bai bao cua minh de viet luan a'n thi
ca'c ba'c lam ve toa'n tha^'y co' day du? so lieu cho luan a'n hay chua?
Ta.m da'nh gia thoi vi ba'c Thang no'i la khong co' ca'c ba`i ba'o trong tay.
       - Tat nhie^n cha^'t lu+o+.ng cu?a tu+`ng lua^.n a'n co' the^? kha'c
nhau, tuy vay nguoi ngoai nga`nh nhu+ toi thay rang neu ca 9 bai bao deu
dang o tap chi' peer-reviewed thi it nhat la TS Tuyen du dieu kien de bao
ve luan an TS roi chu+'?.
       - Nguoi ta co noi nhieu den chat luong cua TS Nga sau khi Lien Bang
So Viet tan ra. Cung khong phai vi the ma "suy" rang chat luong cua luan
a'n cua TS Tuyen la` tha^'p. To^i va^~n rat chu quan cho rang Hoi Dong cham
luan a'n la mot to chuc rat co tra'ch nhiem de da'nh gia. Roi moi cho phep
bao ve.
       - Co le trong toan ho.c co dang tap chi' Math. review nay de cho moi
nguoi "mo^? xe?" lan nhau. Trong sinh ho.c toi khong thay co' loai tap chi
kieu nay (neu ba'c nao biet thi chi gium cho toi).
       - Ba'c Tuan (Aus) co noi la c'ac bai bao moi la` quan trong...Dieu
nay toi thay hoan toan dung. Khong hieu ca'c nuoc qui dinh ra sao, mot so
noi ma toi biet (nhu Phap, hoac My) thi nguoi ta qui dinh ro la de duoc bao
ve thi phai co 3 hoac 4 bai bao duoc (hoac se duoc) dang o cac tap chi quoc
te (nghia la editorial board la international). Thuc te, ben Phap qui dinh
chat hon ben My nhieu (trong nganh cua toi), nghia la de bao ve thi phai co
article duoc (hoac da duoc chap nhan) da(ng. Ben My thi doi khi bao ve xong
thi nguoi sinh vien moi viet bao (co le do khong co thoi gian viet khi dang
lam luan an) va phia duoi bao gio cung de ro bai bao nay la "partial
requirement for MSc/or PhD program". Nhin chung sau khi tot nghiep, 1 Msc
cua My co it nhat la 1 ba`i, PhD co it nhat la 3 bai tu luan a'n cua minh.
Hien nay, toi con thay mot dang luan a'n (vi du mot so truong DH o Ha lan)
chi la mot ta^.p ca'c bai ba'o go^.p la.i voi mot phan tong quan va mot
phan thao luan. Moi bai bao coi nhu la mot chuong cua luan an. Moi kieu
luan an co cai hay co' cai do, nhung co le hien nay nguoi ta thich kieu
luan an nay "cho go.n".
       - Ro rang la` y kien cua anh Tien, anh Thang...va cac anh kha'c la
dang luu y o khia canh la "Thang My no' tha^m". Lieu trong Math Review co
hien tuong la mot do^.c gia? muon nhan xet (hay review) mot bai nao thi
viet len va roi Math. Review cu the la da(ng ma` kho^ng nghi den la bai bao
se duoc su dung vai na(m sau voi mot muc dich khac? Y toi muon noi la ngoai
reviewer duoc moi review thi co truong hop "tu review" roi gui di da(ng
khong? Tap chi co' review lai reviewer khong?
        - Toi nhin vu viec cua TS Tuyen mot ca'ch rat de` da(.t, so rang
minh thieu thong tin va them nua so su+ viec da bi "chinh tri" hoa, ma theo
nhu ba'c Z la "khong co tot, xau; ma chi co tha('ng, thua" thi qua? la`
"lua cha'y do them da^`u". 
       Toi gop va`i y' "khong toan ho.c" chut nao, ca'c ba'c tham gia the^m.
       Cheers.
 ---
 Items Authored by: Nguen Suan Tuen
 
 [1] 95j:20050 Nguen Suan Tuen On the cohomology of alternating groups
 and its  application in topology. (Russian) Trudy
 Tbiliss. Mat. Inst. Razmadze Akad.  Nauk Gruzii 97 (1992),
 18--47. (Reviewer: Nguyen H. V.  Hung) 20J06 (55R40)
 
 [2] 90a:20109 Nguen Suan Tuen Mod $2$ cohomology algebras of the
 alternating groups. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 130
 (1988), no. 1, 21--23.  (Reviewer: Jack Weinstein) 20J06
 
 [3] 89f:20056 Nguen Suan Tuen Calculation of the homology algebras of
 a class  of groups. (Russian) Soobshch. Akad. Nauk Gruzin. SSR 126
 (1987), no. 1, 25--27.  (Reviewer: Stefan Jackowski) 20J06 (20B35)
 
 [4] 84j:18011 Nguy\cftil en Xu=E2n Tuy\cfac en On finite-order
 extensions of  quasimodules. (Vietnamese) T\d ap ch=ED To=E1n h\d oc
10
 (1982), no. 1, 27--32.  18G15 (16A62 18F20)
 
 [5] 81h:20100 Nguy\tilcf en Xu=E2n Tuy=EAn On some exact sequences of
 cohomology  of monoids. Bull. Acad. Polon. Sci. S=E9r. Sci. Math. 27
 (1979), no. 7-8, 521--523 (1980).  (Reviewer: Charles Ching An Cheng)
 20M50
 
 [6] 57 #12651 Nguen Suan Tuen Some functorial properties of the
 cohomology of  monoids. (Russian) Sakharth. SSR Mecn. Akad. Moambe 87
 (1977), no. 2, 281--284.  (Reviewer: V. A. Artamanov) 18H40 (18H10
 12G10)
 
 [7] 56 #15736 Nguen Suan Tuen The cohomology of monoids. (Russian)
 Sakharth. SSR  Mecn. Akad. Moambe 85 (1977), no. 3,
 545--548. (Reviewer: W. T. van Est) 18H40 (18G10)
 
 [8] 55 #3039 Nguen Suan Tuen Nonabelian extensions of
 monoids. (Russian)  Sakharth. SSR Mecn. Akad. Moambe 84 (1976), no. 1,
 37--39. (Reviewer: V. A.  Artamonov) 18H40 (20M10)
 
 [9] 55 #3038 Nguen Suan Tuen Extensions of groups and
 monoids. (Russian)  Sakharth. SSR Mecn. Akad. Moambe 83 (1976), no. 1,
 25--28. (Reviewer: A. I.  Moskalenko) 18H40 (20M10)
 
 =A9 Copyright American Mathematical Society 1997 =