| Class \ Predict | Cat | Dog | Dragon |
| Cat | 40 | 10 | 0 |
| Dog | 10 | 20 | 0 |
| Dragon | 0 | 10 | 30 |
| Class \ Predict | Cat | Dog | Dragon |
| Cat | 40 | 10 | 0 |
| Dog | 10 | 20 | 0 |
| Dragon | 0 | 10 | 30 |
| Class \ Predict | Cat | Dog | Dragon |
| Cat | 40 | 10 | 0 |
| Dog | 10 | 20 | 0 |
| Dragon | 0 | 10 | 30 |
matrix.argmax(axis = 1), where matrix is the following numpy array?
array([[60, 54, 50, 55],
[56, 51, 61, 59],
[52, 57, 58, 53]])
[0, 2, 2] [0, 2, 1, 1] [60, 61, 58] [60, 57, 61, 59] LogisticRegression for multi-class prediction involves finding the position of the largest number in each row of a matrix M. How can this be done? M.argmax(axis = 1) M.argmax(axis = 0) M.max(axis = 1) M.max(axis = 0) train_test_split? random_state = 50 test_size = 0.5 test_size = 50 random.seed(50) plt.imshow (or skimage.io.imshow as in the lectures)? M[0:10,0:10,0:3] M[0:100,0:3] M[0:10,0:10,0] M[0:100,0] 3 6 1 10 3/10 log(5/3) 2/4 log(4/11) 3/10 log(3/5) 2/4 log(11/4) skimage.filters.gaussian skimage.filters.sobel skimage.filters.roberts skimage.filters.prewitt Last Updated: November 03, 2025 at 1:01 PM