Class \ Predict | Cat | Dog | Dragon |
Cat | 40 | 10 | 0 |
Dog | 10 | 20 | 0 |
Dragon | 0 | 10 | 30 |
Class \ Predict | Cat | Dog | Dragon |
Cat | 40 | 10 | 0 |
Dog | 10 | 20 | 0 |
Dragon | 0 | 10 | 30 |
Class \ Predict | Cat | Dog | Dragon |
Cat | 40 | 10 | 0 |
Dog | 10 | 20 | 0 |
Dragon | 0 | 10 | 30 |
matrix.argmax(axis = 1)
, where matrix
is the following numpy array?
array([[60, 54, 50, 55],
[56, 51, 61, 59],
[52, 57, 58, 53]])
[0, 2, 2]
[0, 2, 1, 1]
[60, 61, 58]
[60, 57, 61, 59]
LogisticRegression
for multi-class prediction involves finding the position of the largest number in each row of a matrix M
. How can this be done? M.argmax(axis = 1)
M.argmax(axis = 0)
M.max(axis = 1)
M.max(axis = 0)
train_test_split
? random_state = 50
test_size = 0.5
test_size = 50
random.seed(50)
plt.imshow
(or skimage.io.imshow
as in the lectures)? M[0:10,0:10,0:3]
M[0:100,0:3]
M[0:10,0:10,0]
M[0:100,0]
3
6
1
10
3/10 log(5/3)
2/4 log(4/11)
3/10 log(3/5)
2/4 log(11/4)
skimage.filters.gaussian
skimage.filters.sobel
skimage.filters.roberts
skimage.filters.prewitt
Last Updated: November 18, 2024 at 11:43 PM