Prev: M12 Next: M14

# M13 Past Exam Problems

📗 Enter your ID (the wisc email ID without @wisc.edu) here: and click (or hit enter key)
📗 If the questions are not generated correctly, try refresh the page using the button at the top left corner.
📗 The same ID should generate the same set of questions. Your answers are not saved when you close the browser. You could print the page: , solve the problems, then enter all your answers at the end.
📗 Please do not refresh the page: your answers will not be saved.

# Warning: please enter your ID before you start!


# Question 1


📗

# Question 2


📗

# Question 3


📗

# Question 4


📗

# Question 5


📗

# Question 6


📗

# Question 7


📗

# Question 8


📗

# Question 9


📗

# Question 10


📗

# Question 11


📗

# Question 12


📗

# Question 13


📗

# Question 14


📗

# Question 15


📗

# Question 16


📗

# Question 17


📗

# Question 18


📗

# Question 19


📗

# Question 20


📗

# Question 21


📗

# Question 22


📗

# Question 23


📗

# Question 24


📗

# Question 25


📗


📗 [4 points] Given two items \(x_{1}\) = and \(x_{2}\) = , suppose the feature map for a kernel SVM (Support Vector Machine) is \(\varphi\left(x\right)\) = , what is the kernel (Gram) matrix?
📗 Answer (matrix with multiple lines, each line is a comma separated vector): .
📗 [4 points] Consider a kernel \(K\left(x_{i_{1}}, x_{i_{2}}\right)\) = + , where both \(x_{i_{1}}\) and \(x_{i_{2}}\) are 1D positive real numbers. What is the feature vector \(\varphi\left(x_{i}\right)\) induced by this kernel evaluated at \(x_{i}\) = ?
📗 Answer (comma separated vector): .
📗 [4 points] Consider a kernel \(K\left(x_{i_{1}}, x_{i_{2}}\right)\) = + + , where both \(x_{i_{1}}\) and \(x_{i_{2}}\) are 1D positive real numbers. What is the feature vector \(\varphi\left(x_{i}\right)\) induced by this kernel evaluated at \(x_{i}\) = ?
📗 Answer (comma separated vector): .
📗 [3 points] Given there are data points, each data point has features, the feature map creates new features (to replace the original features). What is the size of the kernel matrix when training a kernel SVM (Support Vector Machine)? For example, if the matrix is \(2 \times 2\), enter the number \(4\).
📗 Answer: .
📗 [4 points] Given the two training points and and their labels \(0\) and \(1\). What is the kernel (Gram) matrix if the RBF (radial basis function) Gaussian kernel with \(\sigma\) = is used? Use the formula \(K_{i i'} = e^{- \dfrac{1}{2 \sigma^{2}} \left(x_{i} - x_{i'}\right)^\top \left(x_{i} - x_{i'}\right)}\).
📗 Answer (matrix with multiple lines, each line is a comma separated vector): .
📗 [2 points] Let \(w\) = and \(b\) = . For the point \(x\) = , \(y\) = , what is the smallest slack value \(\xi\) for it to satisfy the margin constraint?
📗 Answer: .
📗 [4 points] If \(K\left(x, x'\right)\) is a kernel with induced feature representation \(\varphi\left(x_{0}\right)\) = , and \(G\left(x, x'\right)\) is another kernel with induced feature representation \(\theta\left(x_{0}\right)\) = , then it is known that \(H\left(x, x'\right) = a K\left(x, x'\right) + b G\left(x, x'\right)\), \(a\) = , \(b\) = is also a kernel. What is the induced feature representation of \(H\) for this \(x_{0}\)?
📗 Answer (comma separated vector): .
📗 [3 points] Recall a SVM (Support Vector Machine) with slack variables has the objective function \(\dfrac{\lambda}{2} w^\top w + \dfrac{1}{n} \displaystyle\sum_{i=1}^{n} \xi_{i}\), which is equivalent to \(\dfrac{1}{2} w^\top w + C \displaystyle\sum_{i=1}^{n} \xi_{i}\). What is the optimal \(w\) when the trade-off parameter \(C\) is 0? The training data contains only points with label 0 and with label 1. Only enter the weights, no bias.
📗 Answer (comma separated vector): .
📗 [3 points] Recall a linear SVM (Support Vector Machine) with slack variables has the objective function \(\dfrac{1}{2} w^\top w + C \displaystyle\sum_{i=1}^{n} \varepsilon_{i}\). What is the optimal \(w\) when the trade-off parameter \(C\) is 0? The training data contains only points with label 0 and with label 1. Only enter the weights, no bias.
📗 Answer (comma separated vector): .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .
📗 [1 points] Blank.
📗 Answer: .

# Grade


 * * * *

 * * * * *


📗 You could save the text in the above text box to a file using the button or copy and paste it into a file yourself .
📗 You could load your answers from the text (or txt file) in the text box below using the button . The first two lines should be "##m: 13" and "##id: your id", and the format of the remaining lines should be "##1: your answer to question 1" newline "##2: your answer to question 2", etc. Please make sure that your answers are loaded correctly before submitting them.


📗 You can find videos going through the questions on Link.





Last Updated: January 20, 2025 at 3:12 AM