Shivaram Venkataraman
Assistant Professor, Computer Science, University of Wisconsin-Madison
Office: 7367 CS. Email: shivaram at cs.wisc.edu
Publications
- Tzu-Tao Chang, Shivaram Venkataraman
Eva: Cost-Efficient Cloud-Based Cluster Scheduling -
Eurosys 2025
- Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, Shivaram Venkataraman
TUNA: Tuning Unstable and Noisy Cloud Applications -
Eurosys 2025
- Minghao Yan, Saurabh Agarwal, Shivaram Venkataraman
Decoding Speculative Decoding -
NAACL 2025
-
Meguru Yamazaki, Shivaram Venkataraman
CO2: Precise Attention Score Observation for improving KV
Cache Replacement in Large Language Model - Efficient Systems for Foundation Models
(ES-FoMO) Workshop at the International Conference on Machine Learning (ICML) 2024
-
Rutwik Jain, Brandon Tran, Keting Chen, Matthew Sinclair, Shivaram Venkataraman
PAL: A Variability-Aware Policy for Scheduling ML Workloads in GPU Clusters
- International Conference for High Performance Computing, Networking, Storage and
Analysis (Supercomputing 2024)
-
Konstantinos Kanellis, Johannes Freischuetz, Shivaram Venkataraman Nautilus: A Benchmarking
Platform for DBMS Knob Tuning - DEEM Workshop 2024
-
Saurabh Agarwal, Bilge Acun, Basil Homer, Mostafa Elhoushi, Yejin Lee, Shivaram Venkataraman, Dimitris Papailiopoulos, Carole-Jean Wu
CHAI: Clustered Head Attention for Efficient
LLM Inference - ICML 2024
-
Song Bian, Dacheng Li, Hongyi Wang, Eric Xing, Shivaram Venkataraman Does
compressing activations help model parallel training? - MLSys 2024
-
Saurabh Agarwal, Amar Phanishayee, Shivaram Venkataraman Blox: A
Modular Toolkit for Deep Learning Schedulers - Eurosys 2024
-
Saurabh Agarwal, Chengpo Yan, Ziyi Zhang, Shivaram Venkataraman
BagPipe: Accelerating Deep Recommendation Model Training
- SOSP 2023
-
Qiyang Ding, Pengfei Zheng, Shreyas Kudari, Shivaram Venkataraman, Zhao Zhang
Mirage: Towards Low-interruption Services on Batch GPU
clusters with Reinforcement Learning
- International Conference for High Performance Computing, Networking, Storage and
Analysis (Supercomputing 2023)
-
Roger Waleffe, Jason Mohoney, Theodoros Rekatsinas, Shivaram Venkataraman
MariusGNN: Resource-Efficient Out-of-Core Training of Graph Neural Networks
- Eurosys 2023
-
Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman, Aditya Akella
Shockwave: Fair and Efficient Cluster Scheduling for Dynamic
Adaptation in Machine Learning - NSDI 2023
-
Harsh Darshan Sapra, Olesia Elfimova, Sahana Upadhya, Lukas Desorcy, Michael Wagner,
Shivaram Venkataraman, Chol-Bum Kweon, Sage Kokjohn, Justin Shumaker Estimating
Battery State-of-Charge within 1% using Machine Learning and Physics-based Models - SAE World Congress 2023
-
Prasoon Sinha, Akhil Guliani, Rutwik Jain, Matthew Sinclair, Shivaram Venkataraman
Not All GPUs Are Created Equal: Characterizing Variability in Large-Scale, Accelerator-Rich Systems
- International Conference for High Performance Computing, Networking, Storage and
Analysis (Supercomputing 2022)
-
Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino, Shivaram Venkataraman
LlamaTune: Sample-Efficient DBMS Configuration Tuning
- VLDB 2022
-
Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, Dimitris Papailiopoulos
On the Utility of Gradient Compression in Distributed Training Systems
- MLSys 2022
-
Anze Xie, Anders Carlsson, Jason Mohoney, Roger Waleffe , Shanan Peters, Theodoros Rekatsinas, Shivaram Venkataraman
Demonstration of Marius: Graph Embeddings with a Single Machine
- VLDB 2021
-
Adarsh Kumar, Kausik Subramanian, Shivaram Venkataraman, Aditya Akella
Doing more by doing less: how structured partial backpropagation improves deep
learning clusters
- DistributedML Workshop at CoNEXT 2021
-
Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian Foster, Zhao Zhang
KAISA: An Adaptive Second-order Optimizer Framework for Deep Neural Networks
- International Conference for High Performance Computing, Networking, Storage and Analysis (SC21)
-
Jason Mohoney, Roger Waleffe, Yiheng Xu, Theodoros Rekatsinas, Shivaram Venkataraman
Marius: Learning Massive Graph Embeddings on a Single Machine
- OSDI 2021
-
Arjun Singhvi, Arjun Balasubramanian, Kevin Houck, Mohammed Danish Shaikh, Shivaram Venkataraman, Aditya Akella
Atoll: A Scalable Low-Latency Serverless Platform
- SoCC 2021
-
Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram Venkataraman, Dimitris Papailiopoulos
Accordion: Adaptive Gradient Communication via Critical Learning Regime Identification
- MLSys 2021
-
Le Xu, Shivaram Venkataraman, Indranil Gupta, Luo Mai and Rahul Potharaju
Move Fast and Meet Deadlines: Fine-grained Real-time Stream Processing with Cameo
- NSDI 2021
-
Yuhan Liu, Saurabh Agarwal, Shivaram Venkataraman
AutoFreeze: Automatically Freezing Model Blocks to Accelerate Fine-tuning
- arXiv preprint code
-
Arjun Balasubramanian, Adarsh Kumar, Yuhan Liu, Han Cao, Shivaram Venkataraman, Aditya Akella
Accelerating Deep Learning Inference via Learned Caches
- arXiv preprint
-
Vaishaal Shankar, Karl Krauth, Kailas Vodrahalli, Qifan Pu, Ion Stoica, Benjamin Recht, Jonathan Ragan-Kelley, Eric Jonas, Shivaram Venkataraman
Serverless Linear Algebra - SoCC 2020
-
Konstantinos Kanellis, Ramnatthan Alagappan, Shivaram Venkataraman.
Too Many Knobs to Tune? Towards Faster Database Tuning by Pre-selecting Important Knobs
- HotStorage 2020
-
Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkataraman, and Aditya Akella, Amar Phanishayee, Shuchi Chawla.
Themis: Fair and Efficient GPU Cluster Scheduling
- NSDI 2020
-
Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Nikhil Devanur, Jorgen Thelin, Ion Stoica
Blink: Fast and Generic Collectives for Distributed ML
- MLSys 2020
-
Jack Kosaian, K.V. Rashmi, Shivaram Venkataraman
Parity Models: Erasure-Coded Resilience for Prediction Serving
Systems - SOSP 2019
-
Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, Junjie Qian, Wencong Xiao, Fan Yang
Analysis of Large-Scale
Multi-Tenant GPU Clusters for DNN Training Workloads - USENIX ATC 2019
-
John Emmons, Sadjad Fouladi, Ganesh Ananthanarayanan, Shivaram Venkataraman, Silvio Savarese, Keith Winstein
Cracking open the DNN black-box: Video Analytics with DNNs across the Camera-Cloud Boundary -
Hot Topics in Video Analytics and Intelligent Edges (HotEdgeVideo 2019)
-
Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, and Aditya Akella
Accelerating Deep Learning Inference via Freezing - HotCloud 2019
-
Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, Shivaram Venkataraman
The Case for Unifying Data Loading in Machine Learning Clusters - HotCloud 2019
-
Qifan Pu, Shivaram Venkataraman, Ion Stoica
Shuffling, Fast and Slow: Scalable Analytics on Serverless Infrastructure - NSDI 2019
-
Jack Kosaian, K.V. Rashmi, Shivaram Venkataraman
Learning a Code: Machine Learning for
Approximate Non-Linear Coded Computation - arxiv preprint
-
Anand Padmanabha Iyer, Zaoxing Liu and Xin Jin, Shivaram Venkataraman, Vladimir Braverman, Ion Stoica
ASAP: Fast, Approximate Pattern Mining at Scale - OSDI 2018
-
Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman, Paramvir Bahl, and Matthai Philipose, Phillip B. Gibbons, Onur Mutlu
Focus: Querying Large Video Datasets with Low Latency and Low Cost - OSDI 2018
-
Luo Mai, Kai Zeng, Rahul Potharaju, Le Xu, Steve Suh, Shivaram Venkataraman, Paolo Costa,
Terry Kim, Saravanam Muthukrishnan, Vamsi Kuppa, Sudheer Dhulipalla, Sriram Rao
Chi: A Scalable and Programmable Control Plane for Distributed Stream Processing Systems - VLDB 2018
-
Anand Iyer, Aurojit Panda, Shivaram Venkatraman, Mosharaf Chowdhury, Aditya Akella, Scott Shenker, Ion Stoica
Bridging the GAP: Towards Approximate Graph
Analytics - GRADES-NDA 2018.
-
Anand Iyer, Zaoxing Liu, Xin Jin, Shivaram Venkataraman, Vladimir Braverman, Ion Stoica
Towards Fast and Scalable Graph Pattern
Mining - HotCloud 2018
-
Shivaram Venkataraman
System Design for Large Scale Machine Learning - PhD Dissertation
-
Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Ghodsi, Michael J. Franklin, Benjamin Recht, Ion Stoica
Drizzle: Fast and Adaptable Stream Processing at Scale - SOSP 2017
-
Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, Benjamin Recht
Occupy the Cloud: Distributed Computing for the 99% - SoCC 2017 - arxiv version
-
Stephen Tu, Shivaram Venkataraman, Ashia C. Wilson, Alex Gittens, Michael I. Jordan, Benjamin Recht
Breaking Locality Accelerates Block Gauss-Seidel - ICML 2017 arxiv version
-
Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin, Benjamin Recht
KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics - ICDE 2017 arxiv version
-
Omid Alipourfard, Jianshu Chen, Hongqiang Liu, Shivaram Venkataraman, Minlan Yu, Ming Zhang
Cherry Pick: Adaptively Unearthing the Best Cloud Configurations for Big Data Analytics - NSDI 2017
-
Xinghao Pan, Shivaram Venkataraman, Zizheng Tai, Joseph Gonzalez
Hemingway: Modeling Distributed Optimization Algorithms - Learning Systems Workshop, NIPS 2016
-
Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael
Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael
J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, Ion Stoica
Apache Spark: A Unified Engine for Big Data Processing - CACM Contributed Article, Nov 2016
-
Shivaram Venkataraman, Zongheng Yang, Michael J Franklin, Ben Recht, Ion Stoica
Ernest: Efficient Performance Prediction for Large
Scale Advanced Analytics - NSDI 2016
-
Shivaram Venkataraman, Zongheng Yang, Davies Liu, Eric Liang, Hossein Falaki, Xiangrui
Meng, Reynold Xin, Ali Ghodsi, Michael Franklin, Ion Stoica, Matei Zaharia
SparkR: Scaling R Programs with Spark - SIGMOD 2016
-
Reza Zadeh, Xiangrui Meng, Alexander Ulanov, Burak Yavuz, Li Pu, Shivaram Venkataraman, Evan
Sparks, Aaron Staple, Matei Zaharia
Matrix Computations and Optimization in Apache
Spark - KDD 2016. Best Paper runner-up, Applied Data Science Track.
-
Stephen Tu, Rebecca Roelofs, Shivaram Venkataraman, Ben Recht
Large Scale Kernel Learning using Block Coordinate
Descent - arxiv preprint
-
Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies
Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J
Franklin, Reza Zadeh, Matei Zaharia, Ameet Talwalkar
MLlib: Machine Learning in Apache Spark -
JMLR 17(34):1–7, 2016
-
Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael Franklin, Ion Stoica
The Power of Choice in Data-Aware Cluster Scheduling - OSDI 2014
-
Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
Quantifying eventual consistency with PBS - CACM
Research Highlight August 2014
-
Kay Ousterhout, Aurojit Panda, Joshua Rosen, Shivaram Venkataraman,
Reynold Xin, Sylvia Ratnasamy, Scott Shenker, Ion Stoica
The Case for Tiny Tasks in Compute Clusters - HotOS 2013
-
Shivaram Venkataraman, Erik Bodzsar, Indrajit Roy, Alvin AuYoung, and Robert S. Schreiber
Presto: Distributed Machine Learning and Graph Processing with Sparse
Matrices - Eurosys 2013
-
Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
PBS at Work: Advancing Data Management with
Consistency Metrics. - Demo at SIGMOD 2013
-
Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Ion Stoica, and Randy Katz
Cake: Enabling High-level SLOs
on Shared Storage Systems - SoCC 2012
-
Andrew Wang, Shivaram Venkataraman, Sara Alspaugh, Ion Stoica, and Randy Katz
Sweet Storage SLOs
with Frosting - HotCloud 2012
-
Shivaram Venkataraman, Indrajit Roy, Alvin AuYoung, and Robert S. Schreiber
Using R for Iterative and
Incremental Processing - HotCloud 2012
-
Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
Quantifying Eventual
Consistency with PBS - VLDB Journal Special Edition - Best of VLDB 2012
-
Peter Bailis, Shivaram Venkataraman, Michael Franklin, Joseph M. Hellerstein, and Ion Stoica
Probabilistically Bounded
Staleness for Practical Partial Quorums - VLDB 2012
-
Storage system design for non-volatile byte-addressable memory using
consistent and durable data structures - Masters Thesis, University of Illinois, Urbana-Champaign 2011
-
Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy Campbell
Consistent and Durable Data Structures for Non-Volatile
Byte-Addressable Memory - FAST 2011
-
Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, Roy Campbell
Redesigning Data Structures for Non-Volatile Byte-Addressable
Memory - Non-Volatile Memories Workshop 2011
-
Reza Farivar, Harshit Kharbanda, Shivaram Venkataraman, Roy Campbell
An Algorithm for Fast Edit
Distance Computation on GPUs - IEEE Innovative Parallel Computing
(InPar) 2012
-
Abhishek Verma, Shivaram Venkataraman, Matthew Caesar, and Roy H. Campell
Scalable Storage for
Data-intensive Computing - Handbook of Data-Intensive Computing, Springer Science, 2011.
-
Ellick Chan, Shivaram Venkataraman, Nadia Tkach, Kevin Larson, Alejandro Gutierrez and Roy H. Campbell
Characterizing Data
Structures for Volatile Forensics - Workshop on Systematic Approaches to Digital
Forensic Engineering (SADFE), 2011
-
Elllick Chan, Shivaram Venkataraman, Francis David, Amey Chaugule, Roy Campbell
Forenscope: A Framework
for Live Forensics - ACSAC 2010
-
Abhishek Verma, Xavier Llora, Shivaram Venkataraman, David Goldberg and Roy Campbell
Scaling eCGA Model Building via
Data Intensive Computing - IEEE Congress on Evolutionary Computation, CEC 2010