gem5
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
intmath.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2001, 2003-2005 The Regents of The University of Michigan
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are
7  * met: redistributions of source code must retain the above copyright
8  * notice, this list of conditions and the following disclaimer;
9  * redistributions in binary form must reproduce the above copyright
10  * notice, this list of conditions and the following disclaimer in the
11  * documentation and/or other materials provided with the distribution;
12  * neither the name of the copyright holders nor the names of its
13  * contributors may be used to endorse or promote products derived from
14  * this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Authors: Nathan Binkert
29  * Steve Reinhardt
30  */
31 
32 #include "base/intmath.hh"
33 
34 int
36 {
37  int decr;
38 
39  // If the number is even, let's start with the previous odd number.
40  if (!(n & 1))
41  --n;
42 
43  // Lets test for divisibility by 3. Then we will be able to easily
44  // avoid numbers that are divisible by 3 in the future.
45  decr = n % 3;
46  if (decr == 0) {
47  n -= 2;
48  decr = 2;
49  }
50  else if (decr == 1)
51  decr = 4;
52 
53  for (;;) {
54  if (isPrime(n))
55  return n;
56  n -= decr;
57  // Toggle between 2 and 4 to prevent trying numbers that are known
58  // to be divisible by 3.
59  decr = 6 - decr;
60  }
61 }
bool isPrime(const T &n)
Definition: intmath.hh:45
Bitfield< 31 > n
Definition: miscregs.hh:1636
int prevPrime(int n)
Definition: intmath.cc:35

Generated on Fri Jun 9 2017 13:03:40 for gem5 by doxygen 1.8.6