Prev: W2 Next: W4

# Summary

📗 Monday lecture: 5:30 to 8:30, Zoom Link
📗 Office hours: 5:30 to 8:30 Wednesdays (Dune) and Thursdays (Zoom Link)
📗 Personal meeting room: always open, Zoom Link
📗 Quiz (use your wisc ID to log in (without "@wisc.edu")): Socrative Link, Regrade request form: Google Form (select Q3).
📗 Math Homework:
M3,
📗 Programming Homework:
P1,
📗 Examples, Quizzes, Discussions:
Q3,

# Lectures

📗 Slides (before lecture, usually updated on Saturday):
Blank Slides: Part 1, Part 2,
Blank Slides (with blank pages for quiz questions): Part 1, Part 2,
📗 Slides (after lecture, usually updated on Tuesday):
Blank Slides with Quiz Questions: Part 1, Part 2,
Annotated Slides: Part 1, Part 2,
📗 My handwriting is really bad, you should copy down your notes from the lecture videos instead of using these.

📗 Notes
Pile

Image by xkcd via towards data science
N/A

# Other Materials

📗 Pre-recorded Videos from 2020
Part 1 (Support Vector Machines): Link
Part 2 (Subgradient Descent): Link
Part 3 (Kernel Trick): Link
Part 4 (Decision Tree): Link
Part 5 (Random Forrest): Link
Part 6 (Nearest Neighbor): Link

📗 Relevant websites
Support Vector Machine: Link
RBF Kernel SVM Demo: Link

Decision Tree: Link
Random Forrest Demo: Link

K Nearest Neighbor: Link
Map of Manhattan: Link
Voronoi Diagram: Link
KD Tree: Link


📗 YouTube videos from 2019 to 2021
How to find the margin expression for SVM? Link
Why does the kernel trick work? Link
Example (Quiz): Compute SVM classifier Link
Example (Quiz): Kernel SVM for XOR operator Link
Example (Quiz): Kernel matrix to feature vector Link
Example (Quiz): Entropy computation Link
Example (Quiz): Decision tree for implication operator Link
Example (Quiz): Three nearest neighbor Link


# Kernel Demo



Data type: , Count:
Kernel type:
Kernel:
Plane:

# Keywords and Notations

📗 Support Vector Machine
SVM classifier: \(\hat{y}_{i} = 1_{\left\{w^\top x_{i} + b \geq 0\right\}}\).
Hard margin, original max-margin formulation: \(\displaystyle\max_{w} \dfrac{2}{\sqrt{w^\top w}}\) such that \(w^\top x_{i} + b \leq -1\) if \(y_{i} = 0\) and \(w^\top x_{i} + b \geq 1\) if \(y_{i} = 1\).
Hard margin, simplified formulation: \(\displaystyle\min_{w} \dfrac{1}{2} w^\top w\) such that \(\left(2 y_{i} - 1\right)\left(w^\top x_{i} + b\right) \geq 1\).
Soft margin, original max-margin formulation: \(\displaystyle\min_{w} \dfrac{1}{2} w^\top w + \dfrac{1}{\lambda} \dfrac{1}{n} \displaystyle\sum_{i=1}^{n} \xi_{i}\) such that \(\left(2 y_{i} - 1\right)\left(w^\top x_{i} + b\right) \geq 1 - \xi, \xi \geq 0\), where \(\xi_{i}\) is the slack variable for instance \(i\), \(\lambda\) is the regularization parameter.
Soft margin, simplified formulation: \(\displaystyle\min_{w} \dfrac{\lambda}{2} w^\top w + \dfrac{1}{n} \displaystyle\sum_{i=1}^{n} \displaystyle\max\left\{0, 1 - \left(2 y_{i} - 1\right) \left(w^\top x_{i} + b\right)\right\}\)
Subgradient descent formula: \(w = \left(1 - \lambda\right) w - \alpha \left(2 y_{i} - 1\right) 1_{\left\{\left(2 y_{i} - 1\right) \left(w^\top x_{i} + b\right) \geq 1\right\}} x_{i}\).

📗 Kernel Trick
Kernel SVM classifier: \(\hat{y}_{i} = 1_{\left\{w^\top \varphi\left(x_{i}\right) + b \geq 0\right\}}\), where \(\varphi\) is the feature map.
Kernal Gram matrix: \(K_{i i'} = \varphi\left(x_{i}\right)^\top \varphi\left(x_{i'}\right)\).
Quadratic Kernel: \(K_{i i'} = \left(x_{i^\top} x_{i'} + 1\right)^{2}\) has feature representation \(\varphi\left(x_{i}\right) = \left(x_{i1}^{2}, x_{i2}^{2}, \sqrt{2} x_{i1} x_{i2}, \sqrt{2} x_{i1}, \sqrt{2} x_{i2}, 1\right)\).
Gaussian RBF Kernel: \(K_{i i'} = \exp\left(- \dfrac{1}{2 \sigma^{2}} \left(x_{i} - x_{i'}\right)^\top \left(x_{i} - x_{i'}\right)\right)\) has infinite-dimensional feature representation, where \(\sigma^{2}\) is the variance parameter.

📗 Information Theory:
Entropy: \(H\left(Y\right) = -\displaystyle\sum_{y=1}^{K} p_{y} \log_{2} \left(p_{y}\right)\), where \(K\) is the number of classes (number of possible labels), \(p_{y}\) is the fraction of data points with label \(y\).
Conditional entropy: \(H\left(Y | X\right) = -\displaystyle\sum_{x=1}^{K_{X}} p_{x} \displaystyle\sum_{y=1}^{K} p_{y|x} \log_{2} \left(p_{y|x}\right)\), where \(K_{X}\) is the number of possible values of feature, \(p_{x}\) is the fraction of data points with feature \(x\), \(p_{y|x}\) is the fraction of data points with label \(y\) among the ones with feature \(x\).
Information gain, for feature \(j\): \(I\left(Y | X_{j}\right) = H\left(Y\right) - H\left(Y | X_{j}\right)\).

📗 Decision Tree:
Decision stump classifier: \(\hat{y}_{i} = 1_{\left\{x_{ij} \geq t_{j}\right\}}\), where \(t_{j}\) is the threshold for feature \(j\).
Feature selection: \(j^\star = \mathop{\mathrm{argmax}}_{j} I\left(Y | X_{j}\right)\).







Last Updated: November 18, 2024 at 11:43 PM