gem5
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
inst_queue_impl.hh
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2011-2014 ARM Limited
3  * Copyright (c) 2013 Advanced Micro Devices, Inc.
4  * All rights reserved.
5  *
6  * The license below extends only to copyright in the software and shall
7  * not be construed as granting a license to any other intellectual
8  * property including but not limited to intellectual property relating
9  * to a hardware implementation of the functionality of the software
10  * licensed hereunder. You may use the software subject to the license
11  * terms below provided that you ensure that this notice is replicated
12  * unmodified and in its entirety in all distributions of the software,
13  * modified or unmodified, in source code or in binary form.
14  *
15  * Copyright (c) 2004-2006 The Regents of The University of Michigan
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  * Authors: Kevin Lim
42  * Korey Sewell
43  */
44 
45 #ifndef __CPU_O3_INST_QUEUE_IMPL_HH__
46 #define __CPU_O3_INST_QUEUE_IMPL_HH__
47 
48 #include <limits>
49 #include <vector>
50 
51 #include "cpu/o3/fu_pool.hh"
52 #include "cpu/o3/inst_queue.hh"
53 #include "debug/IQ.hh"
54 #include "enums/OpClass.hh"
55 #include "params/DerivO3CPU.hh"
56 #include "sim/core.hh"
57 
58 // clang complains about std::set being overloaded with Packet::set if
59 // we open up the entire namespace std
60 using std::list;
61 
62 template <class Impl>
64  int fu_idx, InstructionQueue<Impl> *iq_ptr)
65  : Event(Stat_Event_Pri, AutoDelete),
66  inst(_inst), fuIdx(fu_idx), iqPtr(iq_ptr), freeFU(false)
67 {
68 }
69 
70 template <class Impl>
71 void
73 {
74  iqPtr->processFUCompletion(inst, freeFU ? fuIdx : -1);
75  inst = NULL;
76 }
77 
78 
79 template <class Impl>
80 const char *
82 {
83  return "Functional unit completion";
84 }
85 
86 template <class Impl>
88  DerivO3CPUParams *params)
89  : cpu(cpu_ptr),
90  iewStage(iew_ptr),
91  fuPool(params->fuPool),
92  numEntries(params->numIQEntries),
93  totalWidth(params->issueWidth),
95 {
96  assert(fuPool);
97 
98  numThreads = params->numThreads;
99 
100  // Set the number of total physical registers
101  numPhysRegs = params->numPhysIntRegs + params->numPhysFloatRegs +
102  params->numPhysCCRegs;
103 
104  //Create an entry for each physical register within the
105  //dependency graph.
106  dependGraph.resize(numPhysRegs);
107 
108  // Resize the register scoreboard.
109  regScoreboard.resize(numPhysRegs);
110 
111  //Initialize Mem Dependence Units
112  for (ThreadID tid = 0; tid < numThreads; tid++) {
113  memDepUnit[tid].init(params, tid);
114  memDepUnit[tid].setIQ(this);
115  }
116 
117  resetState();
118 
119  std::string policy = params->smtIQPolicy;
120 
121  //Convert string to lowercase
122  std::transform(policy.begin(), policy.end(), policy.begin(),
123  (int(*)(int)) tolower);
124 
125  //Figure out resource sharing policy
126  if (policy == "dynamic") {
127  iqPolicy = Dynamic;
128 
129  //Set Max Entries to Total ROB Capacity
130  for (ThreadID tid = 0; tid < numThreads; tid++) {
131  maxEntries[tid] = numEntries;
132  }
133 
134  } else if (policy == "partitioned") {
136 
137  //@todo:make work if part_amt doesnt divide evenly.
138  int part_amt = numEntries / numThreads;
139 
140  //Divide ROB up evenly
141  for (ThreadID tid = 0; tid < numThreads; tid++) {
142  maxEntries[tid] = part_amt;
143  }
144 
145  DPRINTF(IQ, "IQ sharing policy set to Partitioned:"
146  "%i entries per thread.\n",part_amt);
147  } else if (policy == "threshold") {
149 
150  double threshold = (double)params->smtIQThreshold / 100;
151 
152  int thresholdIQ = (int)((double)threshold * numEntries);
153 
154  //Divide up by threshold amount
155  for (ThreadID tid = 0; tid < numThreads; tid++) {
156  maxEntries[tid] = thresholdIQ;
157  }
158 
159  DPRINTF(IQ, "IQ sharing policy set to Threshold:"
160  "%i entries per thread.\n",thresholdIQ);
161  } else {
162  assert(0 && "Invalid IQ Sharing Policy.Options Are:{Dynamic,"
163  "Partitioned, Threshold}");
164  }
165 }
166 
167 template <class Impl>
169 {
170  dependGraph.reset();
171 #ifdef DEBUG
172  cprintf("Nodes traversed: %i, removed: %i\n",
173  dependGraph.nodesTraversed, dependGraph.nodesRemoved);
174 #endif
175 }
176 
177 template <class Impl>
178 std::string
180 {
181  return cpu->name() + ".iq";
182 }
183 
184 template <class Impl>
185 void
187 {
188  using namespace Stats;
189  iqInstsAdded
190  .name(name() + ".iqInstsAdded")
191  .desc("Number of instructions added to the IQ (excludes non-spec)")
192  .prereq(iqInstsAdded);
193 
194  iqNonSpecInstsAdded
195  .name(name() + ".iqNonSpecInstsAdded")
196  .desc("Number of non-speculative instructions added to the IQ")
197  .prereq(iqNonSpecInstsAdded);
198 
199  iqInstsIssued
200  .name(name() + ".iqInstsIssued")
201  .desc("Number of instructions issued")
202  .prereq(iqInstsIssued);
203 
204  iqIntInstsIssued
205  .name(name() + ".iqIntInstsIssued")
206  .desc("Number of integer instructions issued")
207  .prereq(iqIntInstsIssued);
208 
209  iqFloatInstsIssued
210  .name(name() + ".iqFloatInstsIssued")
211  .desc("Number of float instructions issued")
212  .prereq(iqFloatInstsIssued);
213 
214  iqBranchInstsIssued
215  .name(name() + ".iqBranchInstsIssued")
216  .desc("Number of branch instructions issued")
217  .prereq(iqBranchInstsIssued);
218 
219  iqMemInstsIssued
220  .name(name() + ".iqMemInstsIssued")
221  .desc("Number of memory instructions issued")
222  .prereq(iqMemInstsIssued);
223 
224  iqMiscInstsIssued
225  .name(name() + ".iqMiscInstsIssued")
226  .desc("Number of miscellaneous instructions issued")
227  .prereq(iqMiscInstsIssued);
228 
229  iqSquashedInstsIssued
230  .name(name() + ".iqSquashedInstsIssued")
231  .desc("Number of squashed instructions issued")
232  .prereq(iqSquashedInstsIssued);
233 
234  iqSquashedInstsExamined
235  .name(name() + ".iqSquashedInstsExamined")
236  .desc("Number of squashed instructions iterated over during squash;"
237  " mainly for profiling")
238  .prereq(iqSquashedInstsExamined);
239 
240  iqSquashedOperandsExamined
241  .name(name() + ".iqSquashedOperandsExamined")
242  .desc("Number of squashed operands that are examined and possibly "
243  "removed from graph")
244  .prereq(iqSquashedOperandsExamined);
245 
246  iqSquashedNonSpecRemoved
247  .name(name() + ".iqSquashedNonSpecRemoved")
248  .desc("Number of squashed non-spec instructions that were removed")
249  .prereq(iqSquashedNonSpecRemoved);
250 /*
251  queueResDist
252  .init(Num_OpClasses, 0, 99, 2)
253  .name(name() + ".IQ:residence:")
254  .desc("cycles from dispatch to issue")
255  .flags(total | pdf | cdf )
256  ;
257  for (int i = 0; i < Num_OpClasses; ++i) {
258  queueResDist.subname(i, opClassStrings[i]);
259  }
260 */
261  numIssuedDist
262  .init(0,totalWidth,1)
263  .name(name() + ".issued_per_cycle")
264  .desc("Number of insts issued each cycle")
265  .flags(pdf)
266  ;
267 /*
268  dist_unissued
269  .init(Num_OpClasses+2)
270  .name(name() + ".unissued_cause")
271  .desc("Reason ready instruction not issued")
272  .flags(pdf | dist)
273  ;
274  for (int i=0; i < (Num_OpClasses + 2); ++i) {
275  dist_unissued.subname(i, unissued_names[i]);
276  }
277 */
278  statIssuedInstType
279  .init(numThreads,Enums::Num_OpClass)
280  .name(name() + ".FU_type")
281  .desc("Type of FU issued")
282  .flags(total | pdf | dist)
283  ;
284  statIssuedInstType.ysubnames(Enums::OpClassStrings);
285 
286  //
287  // How long did instructions for a particular FU type wait prior to issue
288  //
289 /*
290  issueDelayDist
291  .init(Num_OpClasses,0,99,2)
292  .name(name() + ".")
293  .desc("cycles from operands ready to issue")
294  .flags(pdf | cdf)
295  ;
296 
297  for (int i=0; i<Num_OpClasses; ++i) {
298  std::stringstream subname;
299  subname << opClassStrings[i] << "_delay";
300  issueDelayDist.subname(i, subname.str());
301  }
302 */
303  issueRate
304  .name(name() + ".rate")
305  .desc("Inst issue rate")
306  .flags(total)
307  ;
308  issueRate = iqInstsIssued / cpu->numCycles;
309 
310  statFuBusy
311  .init(Num_OpClasses)
312  .name(name() + ".fu_full")
313  .desc("attempts to use FU when none available")
314  .flags(pdf | dist)
315  ;
316  for (int i=0; i < Num_OpClasses; ++i) {
317  statFuBusy.subname(i, Enums::OpClassStrings[i]);
318  }
319 
320  fuBusy
321  .init(numThreads)
322  .name(name() + ".fu_busy_cnt")
323  .desc("FU busy when requested")
324  .flags(total)
325  ;
326 
327  fuBusyRate
328  .name(name() + ".fu_busy_rate")
329  .desc("FU busy rate (busy events/executed inst)")
330  .flags(total)
331  ;
332  fuBusyRate = fuBusy / iqInstsIssued;
333 
334  for (ThreadID tid = 0; tid < numThreads; tid++) {
335  // Tell mem dependence unit to reg stats as well.
336  memDepUnit[tid].regStats();
337  }
338 
339  intInstQueueReads
340  .name(name() + ".int_inst_queue_reads")
341  .desc("Number of integer instruction queue reads")
342  .flags(total);
343 
344  intInstQueueWrites
345  .name(name() + ".int_inst_queue_writes")
346  .desc("Number of integer instruction queue writes")
347  .flags(total);
348 
349  intInstQueueWakeupAccesses
350  .name(name() + ".int_inst_queue_wakeup_accesses")
351  .desc("Number of integer instruction queue wakeup accesses")
352  .flags(total);
353 
354  fpInstQueueReads
355  .name(name() + ".fp_inst_queue_reads")
356  .desc("Number of floating instruction queue reads")
357  .flags(total);
358 
359  fpInstQueueWrites
360  .name(name() + ".fp_inst_queue_writes")
361  .desc("Number of floating instruction queue writes")
362  .flags(total);
363 
364  fpInstQueueWakeupQccesses
365  .name(name() + ".fp_inst_queue_wakeup_accesses")
366  .desc("Number of floating instruction queue wakeup accesses")
367  .flags(total);
368 
369  intAluAccesses
370  .name(name() + ".int_alu_accesses")
371  .desc("Number of integer alu accesses")
372  .flags(total);
373 
374  fpAluAccesses
375  .name(name() + ".fp_alu_accesses")
376  .desc("Number of floating point alu accesses")
377  .flags(total);
378 
379 }
380 
381 template <class Impl>
382 void
384 {
385  //Initialize thread IQ counts
386  for (ThreadID tid = 0; tid <numThreads; tid++) {
387  count[tid] = 0;
388  instList[tid].clear();
389  }
390 
391  // Initialize the number of free IQ entries.
392  freeEntries = numEntries;
393 
394  // Note that in actuality, the registers corresponding to the logical
395  // registers start off as ready. However this doesn't matter for the
396  // IQ as the instruction should have been correctly told if those
397  // registers are ready in rename. Thus it can all be initialized as
398  // unready.
399  for (int i = 0; i < numPhysRegs; ++i) {
400  regScoreboard[i] = false;
401  }
402 
403  for (ThreadID tid = 0; tid < numThreads; ++tid) {
404  squashedSeqNum[tid] = 0;
405  }
406 
407  for (int i = 0; i < Num_OpClasses; ++i) {
408  while (!readyInsts[i].empty())
409  readyInsts[i].pop();
410  queueOnList[i] = false;
411  readyIt[i] = listOrder.end();
412  }
413  nonSpecInsts.clear();
414  listOrder.clear();
415  deferredMemInsts.clear();
416  blockedMemInsts.clear();
417  retryMemInsts.clear();
418  wbOutstanding = 0;
419 }
420 
421 template <class Impl>
422 void
424 {
425  activeThreads = at_ptr;
426 }
427 
428 template <class Impl>
429 void
431 {
432  issueToExecuteQueue = i2e_ptr;
433 }
434 
435 template <class Impl>
436 void
438 {
439  timeBuffer = tb_ptr;
440 
441  fromCommit = timeBuffer->getWire(-commitToIEWDelay);
442 }
443 
444 template <class Impl>
445 bool
447 {
448  bool drained = dependGraph.empty() &&
449  instsToExecute.empty() &&
450  wbOutstanding == 0;
451  for (ThreadID tid = 0; tid < numThreads; ++tid)
452  drained = drained && memDepUnit[tid].isDrained();
453 
454  return drained;
455 }
456 
457 template <class Impl>
458 void
460 {
461  assert(dependGraph.empty());
462  assert(instsToExecute.empty());
463  for (ThreadID tid = 0; tid < numThreads; ++tid)
464  memDepUnit[tid].drainSanityCheck();
465 }
466 
467 template <class Impl>
468 void
470 {
471  resetState();
472 }
473 
474 template <class Impl>
475 int
477 {
478  if (iqPolicy == Partitioned) {
479  return numEntries / num_threads;
480  } else {
481  return 0;
482  }
483 }
484 
485 
486 template <class Impl>
487 void
489 {
490  if (iqPolicy != Dynamic || numThreads > 1) {
491  int active_threads = activeThreads->size();
492 
493  list<ThreadID>::iterator threads = activeThreads->begin();
494  list<ThreadID>::iterator end = activeThreads->end();
495 
496  while (threads != end) {
497  ThreadID tid = *threads++;
498 
499  if (iqPolicy == Partitioned) {
500  maxEntries[tid] = numEntries / active_threads;
501  } else if (iqPolicy == Threshold && active_threads == 1) {
502  maxEntries[tid] = numEntries;
503  }
504  }
505  }
506 }
507 
508 template <class Impl>
509 unsigned
511 {
512  return freeEntries;
513 }
514 
515 template <class Impl>
516 unsigned
518 {
519  return maxEntries[tid] - count[tid];
520 }
521 
522 // Might want to do something more complex if it knows how many instructions
523 // will be issued this cycle.
524 template <class Impl>
525 bool
527 {
528  if (freeEntries == 0) {
529  return(true);
530  } else {
531  return(false);
532  }
533 }
534 
535 template <class Impl>
536 bool
538 {
539  if (numFreeEntries(tid) == 0) {
540  return(true);
541  } else {
542  return(false);
543  }
544 }
545 
546 template <class Impl>
547 bool
549 {
550  if (!listOrder.empty()) {
551  return true;
552  }
553 
554  for (int i = 0; i < Num_OpClasses; ++i) {
555  if (!readyInsts[i].empty()) {
556  return true;
557  }
558  }
559 
560  return false;
561 }
562 
563 template <class Impl>
564 void
566 {
567  new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
568  // Make sure the instruction is valid
569  assert(new_inst);
570 
571  DPRINTF(IQ, "Adding instruction [sn:%lli] PC %s to the IQ.\n",
572  new_inst->seqNum, new_inst->pcState());
573 
574  assert(freeEntries != 0);
575 
576  instList[new_inst->threadNumber].push_back(new_inst);
577 
578  --freeEntries;
579 
580  new_inst->setInIQ();
581 
582  // Look through its source registers (physical regs), and mark any
583  // dependencies.
584  addToDependents(new_inst);
585 
586  // Have this instruction set itself as the producer of its destination
587  // register(s).
588  addToProducers(new_inst);
589 
590  if (new_inst->isMemRef()) {
591  memDepUnit[new_inst->threadNumber].insert(new_inst);
592  } else {
593  addIfReady(new_inst);
594  }
595 
596  ++iqInstsAdded;
597 
598  count[new_inst->threadNumber]++;
599 
600  assert(freeEntries == (numEntries - countInsts()));
601 }
602 
603 template <class Impl>
604 void
606 {
607  // @todo: Clean up this code; can do it by setting inst as unable
608  // to issue, then calling normal insert on the inst.
609  new_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
610 
611  assert(new_inst);
612 
613  nonSpecInsts[new_inst->seqNum] = new_inst;
614 
615  DPRINTF(IQ, "Adding non-speculative instruction [sn:%lli] PC %s "
616  "to the IQ.\n",
617  new_inst->seqNum, new_inst->pcState());
618 
619  assert(freeEntries != 0);
620 
621  instList[new_inst->threadNumber].push_back(new_inst);
622 
623  --freeEntries;
624 
625  new_inst->setInIQ();
626 
627  // Have this instruction set itself as the producer of its destination
628  // register(s).
629  addToProducers(new_inst);
630 
631  // If it's a memory instruction, add it to the memory dependency
632  // unit.
633  if (new_inst->isMemRef()) {
634  memDepUnit[new_inst->threadNumber].insertNonSpec(new_inst);
635  }
636 
637  ++iqNonSpecInstsAdded;
638 
639  count[new_inst->threadNumber]++;
640 
641  assert(freeEntries == (numEntries - countInsts()));
642 }
643 
644 template <class Impl>
645 void
647 {
648  memDepUnit[barr_inst->threadNumber].insertBarrier(barr_inst);
649 
650  insertNonSpec(barr_inst);
651 }
652 
653 template <class Impl>
654 typename Impl::DynInstPtr
656 {
657  assert(!instsToExecute.empty());
658  DynInstPtr inst = instsToExecute.front();
659  instsToExecute.pop_front();
660  if (inst->isFloating()){
661  fpInstQueueReads++;
662  } else {
663  intInstQueueReads++;
664  }
665  return inst;
666 }
667 
668 template <class Impl>
669 void
671 {
672  assert(!readyInsts[op_class].empty());
673 
674  ListOrderEntry queue_entry;
675 
676  queue_entry.queueType = op_class;
677 
678  queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
679 
680  ListOrderIt list_it = listOrder.begin();
681  ListOrderIt list_end_it = listOrder.end();
682 
683  while (list_it != list_end_it) {
684  if ((*list_it).oldestInst > queue_entry.oldestInst) {
685  break;
686  }
687 
688  list_it++;
689  }
690 
691  readyIt[op_class] = listOrder.insert(list_it, queue_entry);
692  queueOnList[op_class] = true;
693 }
694 
695 template <class Impl>
696 void
698 {
699  // Get iterator of next item on the list
700  // Delete the original iterator
701  // Determine if the next item is either the end of the list or younger
702  // than the new instruction. If so, then add in a new iterator right here.
703  // If not, then move along.
704  ListOrderEntry queue_entry;
705  OpClass op_class = (*list_order_it).queueType;
706  ListOrderIt next_it = list_order_it;
707 
708  ++next_it;
709 
710  queue_entry.queueType = op_class;
711  queue_entry.oldestInst = readyInsts[op_class].top()->seqNum;
712 
713  while (next_it != listOrder.end() &&
714  (*next_it).oldestInst < queue_entry.oldestInst) {
715  ++next_it;
716  }
717 
718  readyIt[op_class] = listOrder.insert(next_it, queue_entry);
719 }
720 
721 template <class Impl>
722 void
724 {
725  DPRINTF(IQ, "Processing FU completion [sn:%lli]\n", inst->seqNum);
726  assert(!cpu->switchedOut());
727  // The CPU could have been sleeping until this op completed (*extremely*
728  // long latency op). Wake it if it was. This may be overkill.
729  --wbOutstanding;
730  iewStage->wakeCPU();
731 
732  if (fu_idx > -1)
733  fuPool->freeUnitNextCycle(fu_idx);
734 
735  // @todo: Ensure that these FU Completions happen at the beginning
736  // of a cycle, otherwise they could add too many instructions to
737  // the queue.
738  issueToExecuteQueue->access(-1)->size++;
739  instsToExecute.push_back(inst);
740 }
741 
742 // @todo: Figure out a better way to remove the squashed items from the
743 // lists. Checking the top item of each list to see if it's squashed
744 // wastes time and forces jumps.
745 template <class Impl>
746 void
748 {
749  DPRINTF(IQ, "Attempting to schedule ready instructions from "
750  "the IQ.\n");
751 
752  IssueStruct *i2e_info = issueToExecuteQueue->access(0);
753 
754  DynInstPtr mem_inst;
755  while (mem_inst = getDeferredMemInstToExecute()) {
756  addReadyMemInst(mem_inst);
757  }
758 
759  // See if any cache blocked instructions are able to be executed
760  while (mem_inst = getBlockedMemInstToExecute()) {
761  addReadyMemInst(mem_inst);
762  }
763 
764  // Have iterator to head of the list
765  // While I haven't exceeded bandwidth or reached the end of the list,
766  // Try to get a FU that can do what this op needs.
767  // If successful, change the oldestInst to the new top of the list, put
768  // the queue in the proper place in the list.
769  // Increment the iterator.
770  // This will avoid trying to schedule a certain op class if there are no
771  // FUs that handle it.
772  int total_issued = 0;
773  ListOrderIt order_it = listOrder.begin();
774  ListOrderIt order_end_it = listOrder.end();
775 
776  while (total_issued < totalWidth && order_it != order_end_it) {
777  OpClass op_class = (*order_it).queueType;
778 
779  assert(!readyInsts[op_class].empty());
780 
781  DynInstPtr issuing_inst = readyInsts[op_class].top();
782 
783  issuing_inst->isFloating() ? fpInstQueueReads++ : intInstQueueReads++;
784 
785  assert(issuing_inst->seqNum == (*order_it).oldestInst);
786 
787  if (issuing_inst->isSquashed()) {
788  readyInsts[op_class].pop();
789 
790  if (!readyInsts[op_class].empty()) {
791  moveToYoungerInst(order_it);
792  } else {
793  readyIt[op_class] = listOrder.end();
794  queueOnList[op_class] = false;
795  }
796 
797  listOrder.erase(order_it++);
798 
799  ++iqSquashedInstsIssued;
800 
801  continue;
802  }
803 
804  int idx = FUPool::NoCapableFU;
805  Cycles op_latency = Cycles(1);
806  ThreadID tid = issuing_inst->threadNumber;
807 
808  if (op_class != No_OpClass) {
809  idx = fuPool->getUnit(op_class);
810  issuing_inst->isFloating() ? fpAluAccesses++ : intAluAccesses++;
811  if (idx > FUPool::NoFreeFU) {
812  op_latency = fuPool->getOpLatency(op_class);
813  }
814  }
815 
816  // If we have an instruction that doesn't require a FU, or a
817  // valid FU, then schedule for execution.
818  if (idx != FUPool::NoFreeFU) {
819  if (op_latency == Cycles(1)) {
820  i2e_info->size++;
821  instsToExecute.push_back(issuing_inst);
822 
823  // Add the FU onto the list of FU's to be freed next
824  // cycle if we used one.
825  if (idx >= 0)
826  fuPool->freeUnitNextCycle(idx);
827  } else {
828  bool pipelined = fuPool->isPipelined(op_class);
829  // Generate completion event for the FU
830  ++wbOutstanding;
831  FUCompletion *execution = new FUCompletion(issuing_inst,
832  idx, this);
833 
834  cpu->schedule(execution,
835  cpu->clockEdge(Cycles(op_latency - 1)));
836 
837  if (!pipelined) {
838  // If FU isn't pipelined, then it must be freed
839  // upon the execution completing.
840  execution->setFreeFU();
841  } else {
842  // Add the FU onto the list of FU's to be freed next cycle.
843  fuPool->freeUnitNextCycle(idx);
844  }
845  }
846 
847  DPRINTF(IQ, "Thread %i: Issuing instruction PC %s "
848  "[sn:%lli]\n",
849  tid, issuing_inst->pcState(),
850  issuing_inst->seqNum);
851 
852  readyInsts[op_class].pop();
853 
854  if (!readyInsts[op_class].empty()) {
855  moveToYoungerInst(order_it);
856  } else {
857  readyIt[op_class] = listOrder.end();
858  queueOnList[op_class] = false;
859  }
860 
861  issuing_inst->setIssued();
862  ++total_issued;
863 
864 #if TRACING_ON
865  issuing_inst->issueTick = curTick() - issuing_inst->fetchTick;
866 #endif
867 
868  if (!issuing_inst->isMemRef()) {
869  // Memory instructions can not be freed from the IQ until they
870  // complete.
871  ++freeEntries;
872  count[tid]--;
873  issuing_inst->clearInIQ();
874  } else {
875  memDepUnit[tid].issue(issuing_inst);
876  }
877 
878  listOrder.erase(order_it++);
879  statIssuedInstType[tid][op_class]++;
880  } else {
881  statFuBusy[op_class]++;
882  fuBusy[tid]++;
883  ++order_it;
884  }
885  }
886 
887  numIssuedDist.sample(total_issued);
888  iqInstsIssued+= total_issued;
889 
890  // If we issued any instructions, tell the CPU we had activity.
891  // @todo If the way deferred memory instructions are handeled due to
892  // translation changes then the deferredMemInsts condition should be removed
893  // from the code below.
894  if (total_issued || !retryMemInsts.empty() || !deferredMemInsts.empty()) {
895  cpu->activityThisCycle();
896  } else {
897  DPRINTF(IQ, "Not able to schedule any instructions.\n");
898  }
899 }
900 
901 template <class Impl>
902 void
904 {
905  DPRINTF(IQ, "Marking nonspeculative instruction [sn:%lli] as ready "
906  "to execute.\n", inst);
907 
908  NonSpecMapIt inst_it = nonSpecInsts.find(inst);
909 
910  assert(inst_it != nonSpecInsts.end());
911 
912  ThreadID tid = (*inst_it).second->threadNumber;
913 
914  (*inst_it).second->setAtCommit();
915 
916  (*inst_it).second->setCanIssue();
917 
918  if (!(*inst_it).second->isMemRef()) {
919  addIfReady((*inst_it).second);
920  } else {
921  memDepUnit[tid].nonSpecInstReady((*inst_it).second);
922  }
923 
924  (*inst_it).second = NULL;
925 
926  nonSpecInsts.erase(inst_it);
927 }
928 
929 template <class Impl>
930 void
932 {
933  DPRINTF(IQ, "[tid:%i]: Committing instructions older than [sn:%i]\n",
934  tid,inst);
935 
936  ListIt iq_it = instList[tid].begin();
937 
938  while (iq_it != instList[tid].end() &&
939  (*iq_it)->seqNum <= inst) {
940  ++iq_it;
941  instList[tid].pop_front();
942  }
943 
944  assert(freeEntries == (numEntries - countInsts()));
945 }
946 
947 template <class Impl>
948 int
950 {
951  int dependents = 0;
952 
953  // The instruction queue here takes care of both floating and int ops
954  if (completed_inst->isFloating()) {
955  fpInstQueueWakeupQccesses++;
956  } else {
957  intInstQueueWakeupAccesses++;
958  }
959 
960  DPRINTF(IQ, "Waking dependents of completed instruction.\n");
961 
962  assert(!completed_inst->isSquashed());
963 
964  // Tell the memory dependence unit to wake any dependents on this
965  // instruction if it is a memory instruction. Also complete the memory
966  // instruction at this point since we know it executed without issues.
967  // @todo: Might want to rename "completeMemInst" to something that
968  // indicates that it won't need to be replayed, and call this
969  // earlier. Might not be a big deal.
970  if (completed_inst->isMemRef()) {
971  memDepUnit[completed_inst->threadNumber].wakeDependents(completed_inst);
972  completeMemInst(completed_inst);
973  } else if (completed_inst->isMemBarrier() ||
974  completed_inst->isWriteBarrier()) {
975  memDepUnit[completed_inst->threadNumber].completeBarrier(completed_inst);
976  }
977 
978  for (int dest_reg_idx = 0;
979  dest_reg_idx < completed_inst->numDestRegs();
980  dest_reg_idx++)
981  {
982  PhysRegIndex dest_reg =
983  completed_inst->renamedDestRegIdx(dest_reg_idx);
984 
985  // Special case of uniq or control registers. They are not
986  // handled by the IQ and thus have no dependency graph entry.
987  // @todo Figure out a cleaner way to handle this.
988  if (dest_reg >= numPhysRegs) {
989  DPRINTF(IQ, "dest_reg :%d, numPhysRegs: %d\n", dest_reg,
990  numPhysRegs);
991  continue;
992  }
993 
994  DPRINTF(IQ, "Waking any dependents on register %i.\n",
995  (int) dest_reg);
996 
997  //Go through the dependency chain, marking the registers as
998  //ready within the waiting instructions.
999  DynInstPtr dep_inst = dependGraph.pop(dest_reg);
1000 
1001  while (dep_inst) {
1002  DPRINTF(IQ, "Waking up a dependent instruction, [sn:%lli] "
1003  "PC %s.\n", dep_inst->seqNum, dep_inst->pcState());
1004 
1005  // Might want to give more information to the instruction
1006  // so that it knows which of its source registers is
1007  // ready. However that would mean that the dependency
1008  // graph entries would need to hold the src_reg_idx.
1009  dep_inst->markSrcRegReady();
1010 
1011  addIfReady(dep_inst);
1012 
1013  dep_inst = dependGraph.pop(dest_reg);
1014 
1015  ++dependents;
1016  }
1017 
1018  // Reset the head node now that all of its dependents have
1019  // been woken up.
1020  assert(dependGraph.empty(dest_reg));
1021  dependGraph.clearInst(dest_reg);
1022 
1023  // Mark the scoreboard as having that register ready.
1024  regScoreboard[dest_reg] = true;
1025  }
1026  return dependents;
1027 }
1028 
1029 template <class Impl>
1030 void
1032 {
1033  OpClass op_class = ready_inst->opClass();
1034 
1035  readyInsts[op_class].push(ready_inst);
1036 
1037  // Will need to reorder the list if either a queue is not on the list,
1038  // or it has an older instruction than last time.
1039  if (!queueOnList[op_class]) {
1040  addToOrderList(op_class);
1041  } else if (readyInsts[op_class].top()->seqNum <
1042  (*readyIt[op_class]).oldestInst) {
1043  listOrder.erase(readyIt[op_class]);
1044  addToOrderList(op_class);
1045  }
1046 
1047  DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1048  "the ready list, PC %s opclass:%i [sn:%lli].\n",
1049  ready_inst->pcState(), op_class, ready_inst->seqNum);
1050 }
1051 
1052 template <class Impl>
1053 void
1055 {
1056  DPRINTF(IQ, "Rescheduling mem inst [sn:%lli]\n", resched_inst->seqNum);
1057 
1058  // Reset DTB translation state
1059  resched_inst->translationStarted(false);
1060  resched_inst->translationCompleted(false);
1061 
1062  resched_inst->clearCanIssue();
1063  memDepUnit[resched_inst->threadNumber].reschedule(resched_inst);
1064 }
1065 
1066 template <class Impl>
1067 void
1069 {
1070  memDepUnit[replay_inst->threadNumber].replay();
1071 }
1072 
1073 template <class Impl>
1074 void
1076 {
1077  ThreadID tid = completed_inst->threadNumber;
1078 
1079  DPRINTF(IQ, "Completing mem instruction PC: %s [sn:%lli]\n",
1080  completed_inst->pcState(), completed_inst->seqNum);
1081 
1082  ++freeEntries;
1083 
1084  completed_inst->memOpDone(true);
1085 
1086  memDepUnit[tid].completed(completed_inst);
1087  count[tid]--;
1088 }
1089 
1090 template <class Impl>
1091 void
1093 {
1094  deferredMemInsts.push_back(deferred_inst);
1095 }
1096 
1097 template <class Impl>
1098 void
1100 {
1101  blocked_inst->translationStarted(false);
1102  blocked_inst->translationCompleted(false);
1103 
1104  blocked_inst->clearIssued();
1105  blocked_inst->clearCanIssue();
1106  blockedMemInsts.push_back(blocked_inst);
1107 }
1108 
1109 template <class Impl>
1110 void
1112 {
1113  retryMemInsts.splice(retryMemInsts.end(), blockedMemInsts);
1114  // Get the CPU ticking again
1115  cpu->wakeCPU();
1116 }
1117 
1118 template <class Impl>
1119 typename Impl::DynInstPtr
1121 {
1122  for (ListIt it = deferredMemInsts.begin(); it != deferredMemInsts.end();
1123  ++it) {
1124  if ((*it)->translationCompleted() || (*it)->isSquashed()) {
1125  DynInstPtr mem_inst = *it;
1126  deferredMemInsts.erase(it);
1127  return mem_inst;
1128  }
1129  }
1130  return nullptr;
1131 }
1132 
1133 template <class Impl>
1134 typename Impl::DynInstPtr
1136 {
1137  if (retryMemInsts.empty()) {
1138  return nullptr;
1139  } else {
1140  DynInstPtr mem_inst = retryMemInsts.front();
1141  retryMemInsts.pop_front();
1142  return mem_inst;
1143  }
1144 }
1145 
1146 template <class Impl>
1147 void
1149  DynInstPtr &faulting_load)
1150 {
1151  intInstQueueWrites++;
1152  memDepUnit[store->threadNumber].violation(store, faulting_load);
1153 }
1154 
1155 template <class Impl>
1156 void
1158 {
1159  DPRINTF(IQ, "[tid:%i]: Starting to squash instructions in "
1160  "the IQ.\n", tid);
1161 
1162  // Read instruction sequence number of last instruction out of the
1163  // time buffer.
1164  squashedSeqNum[tid] = fromCommit->commitInfo[tid].doneSeqNum;
1165 
1166  doSquash(tid);
1167 
1168  // Also tell the memory dependence unit to squash.
1169  memDepUnit[tid].squash(squashedSeqNum[tid], tid);
1170 }
1171 
1172 template <class Impl>
1173 void
1175 {
1176  // Start at the tail.
1177  ListIt squash_it = instList[tid].end();
1178  --squash_it;
1179 
1180  DPRINTF(IQ, "[tid:%i]: Squashing until sequence number %i!\n",
1181  tid, squashedSeqNum[tid]);
1182 
1183  // Squash any instructions younger than the squashed sequence number
1184  // given.
1185  while (squash_it != instList[tid].end() &&
1186  (*squash_it)->seqNum > squashedSeqNum[tid]) {
1187 
1188  DynInstPtr squashed_inst = (*squash_it);
1189  squashed_inst->isFloating() ? fpInstQueueWrites++ : intInstQueueWrites++;
1190 
1191  // Only handle the instruction if it actually is in the IQ and
1192  // hasn't already been squashed in the IQ.
1193  if (squashed_inst->threadNumber != tid ||
1194  squashed_inst->isSquashedInIQ()) {
1195  --squash_it;
1196  continue;
1197  }
1198 
1199  if (!squashed_inst->isIssued() ||
1200  (squashed_inst->isMemRef() &&
1201  !squashed_inst->memOpDone())) {
1202 
1203  DPRINTF(IQ, "[tid:%i]: Instruction [sn:%lli] PC %s squashed.\n",
1204  tid, squashed_inst->seqNum, squashed_inst->pcState());
1205 
1206  bool is_acq_rel = squashed_inst->isMemBarrier() &&
1207  (squashed_inst->isLoad() ||
1208  (squashed_inst->isStore() &&
1209  !squashed_inst->isStoreConditional()));
1210 
1211  // Remove the instruction from the dependency list.
1212  if (is_acq_rel ||
1213  (!squashed_inst->isNonSpeculative() &&
1214  !squashed_inst->isStoreConditional() &&
1215  !squashed_inst->isMemBarrier() &&
1216  !squashed_inst->isWriteBarrier())) {
1217 
1218  for (int src_reg_idx = 0;
1219  src_reg_idx < squashed_inst->numSrcRegs();
1220  src_reg_idx++)
1221  {
1222  PhysRegIndex src_reg =
1223  squashed_inst->renamedSrcRegIdx(src_reg_idx);
1224 
1225  // Only remove it from the dependency graph if it
1226  // was placed there in the first place.
1227 
1228  // Instead of doing a linked list traversal, we
1229  // can just remove these squashed instructions
1230  // either at issue time, or when the register is
1231  // overwritten. The only downside to this is it
1232  // leaves more room for error.
1233 
1234  if (!squashed_inst->isReadySrcRegIdx(src_reg_idx) &&
1235  src_reg < numPhysRegs) {
1236  dependGraph.remove(src_reg, squashed_inst);
1237  }
1238 
1239 
1240  ++iqSquashedOperandsExamined;
1241  }
1242  } else if (!squashed_inst->isStoreConditional() ||
1243  !squashed_inst->isCompleted()) {
1244  NonSpecMapIt ns_inst_it =
1245  nonSpecInsts.find(squashed_inst->seqNum);
1246 
1247  // we remove non-speculative instructions from
1248  // nonSpecInsts already when they are ready, and so we
1249  // cannot always expect to find them
1250  if (ns_inst_it == nonSpecInsts.end()) {
1251  // loads that became ready but stalled on a
1252  // blocked cache are alreayd removed from
1253  // nonSpecInsts, and have not faulted
1254  assert(squashed_inst->getFault() != NoFault ||
1255  squashed_inst->isMemRef());
1256  } else {
1257 
1258  (*ns_inst_it).second = NULL;
1259 
1260  nonSpecInsts.erase(ns_inst_it);
1261 
1262  ++iqSquashedNonSpecRemoved;
1263  }
1264  }
1265 
1266  // Might want to also clear out the head of the dependency graph.
1267 
1268  // Mark it as squashed within the IQ.
1269  squashed_inst->setSquashedInIQ();
1270 
1271  // @todo: Remove this hack where several statuses are set so the
1272  // inst will flow through the rest of the pipeline.
1273  squashed_inst->setIssued();
1274  squashed_inst->setCanCommit();
1275  squashed_inst->clearInIQ();
1276 
1277  //Update Thread IQ Count
1278  count[squashed_inst->threadNumber]--;
1279 
1280  ++freeEntries;
1281  }
1282 
1283  instList[tid].erase(squash_it--);
1284  ++iqSquashedInstsExamined;
1285  }
1286 }
1287 
1288 template <class Impl>
1289 bool
1291 {
1292  // Loop through the instruction's source registers, adding
1293  // them to the dependency list if they are not ready.
1294  int8_t total_src_regs = new_inst->numSrcRegs();
1295  bool return_val = false;
1296 
1297  for (int src_reg_idx = 0;
1298  src_reg_idx < total_src_regs;
1299  src_reg_idx++)
1300  {
1301  // Only add it to the dependency graph if it's not ready.
1302  if (!new_inst->isReadySrcRegIdx(src_reg_idx)) {
1303  PhysRegIndex src_reg = new_inst->renamedSrcRegIdx(src_reg_idx);
1304 
1305  // Check the IQ's scoreboard to make sure the register
1306  // hasn't become ready while the instruction was in flight
1307  // between stages. Only if it really isn't ready should
1308  // it be added to the dependency graph.
1309  if (src_reg >= numPhysRegs) {
1310  continue;
1311  } else if (!regScoreboard[src_reg]) {
1312  DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1313  "is being added to the dependency chain.\n",
1314  new_inst->pcState(), src_reg);
1315 
1316  dependGraph.insert(src_reg, new_inst);
1317 
1318  // Change the return value to indicate that something
1319  // was added to the dependency graph.
1320  return_val = true;
1321  } else {
1322  DPRINTF(IQ, "Instruction PC %s has src reg %i that "
1323  "became ready before it reached the IQ.\n",
1324  new_inst->pcState(), src_reg);
1325  // Mark a register ready within the instruction.
1326  new_inst->markSrcRegReady(src_reg_idx);
1327  }
1328  }
1329  }
1330 
1331  return return_val;
1332 }
1333 
1334 template <class Impl>
1335 void
1337 {
1338  // Nothing really needs to be marked when an instruction becomes
1339  // the producer of a register's value, but for convenience a ptr
1340  // to the producing instruction will be placed in the head node of
1341  // the dependency links.
1342  int8_t total_dest_regs = new_inst->numDestRegs();
1343 
1344  for (int dest_reg_idx = 0;
1345  dest_reg_idx < total_dest_regs;
1346  dest_reg_idx++)
1347  {
1348  PhysRegIndex dest_reg = new_inst->renamedDestRegIdx(dest_reg_idx);
1349 
1350  // Instructions that use the misc regs will have a reg number
1351  // higher than the normal physical registers. In this case these
1352  // registers are not renamed, and there is no need to track
1353  // dependencies as these instructions must be executed at commit.
1354  if (dest_reg >= numPhysRegs) {
1355  continue;
1356  }
1357 
1358  if (!dependGraph.empty(dest_reg)) {
1359  dependGraph.dump();
1360  panic("Dependency graph %i not empty!", dest_reg);
1361  }
1362 
1363  dependGraph.setInst(dest_reg, new_inst);
1364 
1365  // Mark the scoreboard to say it's not yet ready.
1366  regScoreboard[dest_reg] = false;
1367  }
1368 }
1369 
1370 template <class Impl>
1371 void
1373 {
1374  // If the instruction now has all of its source registers
1375  // available, then add it to the list of ready instructions.
1376  if (inst->readyToIssue()) {
1377 
1378  //Add the instruction to the proper ready list.
1379  if (inst->isMemRef()) {
1380 
1381  DPRINTF(IQ, "Checking if memory instruction can issue.\n");
1382 
1383  // Message to the mem dependence unit that this instruction has
1384  // its registers ready.
1385  memDepUnit[inst->threadNumber].regsReady(inst);
1386 
1387  return;
1388  }
1389 
1390  OpClass op_class = inst->opClass();
1391 
1392  DPRINTF(IQ, "Instruction is ready to issue, putting it onto "
1393  "the ready list, PC %s opclass:%i [sn:%lli].\n",
1394  inst->pcState(), op_class, inst->seqNum);
1395 
1396  readyInsts[op_class].push(inst);
1397 
1398  // Will need to reorder the list if either a queue is not on the list,
1399  // or it has an older instruction than last time.
1400  if (!queueOnList[op_class]) {
1401  addToOrderList(op_class);
1402  } else if (readyInsts[op_class].top()->seqNum <
1403  (*readyIt[op_class]).oldestInst) {
1404  listOrder.erase(readyIt[op_class]);
1405  addToOrderList(op_class);
1406  }
1407  }
1408 }
1409 
1410 template <class Impl>
1411 int
1413 {
1414 #if 0
1415  //ksewell:This works but definitely could use a cleaner write
1416  //with a more intuitive way of counting. Right now it's
1417  //just brute force ....
1418  // Change the #if if you want to use this method.
1419  int total_insts = 0;
1420 
1421  for (ThreadID tid = 0; tid < numThreads; ++tid) {
1422  ListIt count_it = instList[tid].begin();
1423 
1424  while (count_it != instList[tid].end()) {
1425  if (!(*count_it)->isSquashed() && !(*count_it)->isSquashedInIQ()) {
1426  if (!(*count_it)->isIssued()) {
1427  ++total_insts;
1428  } else if ((*count_it)->isMemRef() &&
1429  !(*count_it)->memOpDone) {
1430  // Loads that have not been marked as executed still count
1431  // towards the total instructions.
1432  ++total_insts;
1433  }
1434  }
1435 
1436  ++count_it;
1437  }
1438  }
1439 
1440  return total_insts;
1441 #else
1442  return numEntries - freeEntries;
1443 #endif
1444 }
1445 
1446 template <class Impl>
1447 void
1449 {
1450  for (int i = 0; i < Num_OpClasses; ++i) {
1451  cprintf("Ready list %i size: %i\n", i, readyInsts[i].size());
1452 
1453  cprintf("\n");
1454  }
1455 
1456  cprintf("Non speculative list size: %i\n", nonSpecInsts.size());
1457 
1458  NonSpecMapIt non_spec_it = nonSpecInsts.begin();
1459  NonSpecMapIt non_spec_end_it = nonSpecInsts.end();
1460 
1461  cprintf("Non speculative list: ");
1462 
1463  while (non_spec_it != non_spec_end_it) {
1464  cprintf("%s [sn:%lli]", (*non_spec_it).second->pcState(),
1465  (*non_spec_it).second->seqNum);
1466  ++non_spec_it;
1467  }
1468 
1469  cprintf("\n");
1470 
1471  ListOrderIt list_order_it = listOrder.begin();
1472  ListOrderIt list_order_end_it = listOrder.end();
1473  int i = 1;
1474 
1475  cprintf("List order: ");
1476 
1477  while (list_order_it != list_order_end_it) {
1478  cprintf("%i OpClass:%i [sn:%lli] ", i, (*list_order_it).queueType,
1479  (*list_order_it).oldestInst);
1480 
1481  ++list_order_it;
1482  ++i;
1483  }
1484 
1485  cprintf("\n");
1486 }
1487 
1488 
1489 template <class Impl>
1490 void
1492 {
1493  for (ThreadID tid = 0; tid < numThreads; ++tid) {
1494  int num = 0;
1495  int valid_num = 0;
1496  ListIt inst_list_it = instList[tid].begin();
1497 
1498  while (inst_list_it != instList[tid].end()) {
1499  cprintf("Instruction:%i\n", num);
1500  if (!(*inst_list_it)->isSquashed()) {
1501  if (!(*inst_list_it)->isIssued()) {
1502  ++valid_num;
1503  cprintf("Count:%i\n", valid_num);
1504  } else if ((*inst_list_it)->isMemRef() &&
1505  !(*inst_list_it)->memOpDone()) {
1506  // Loads that have not been marked as executed
1507  // still count towards the total instructions.
1508  ++valid_num;
1509  cprintf("Count:%i\n", valid_num);
1510  }
1511  }
1512 
1513  cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1514  "Issued:%i\nSquashed:%i\n",
1515  (*inst_list_it)->pcState(),
1516  (*inst_list_it)->seqNum,
1517  (*inst_list_it)->threadNumber,
1518  (*inst_list_it)->isIssued(),
1519  (*inst_list_it)->isSquashed());
1520 
1521  if ((*inst_list_it)->isMemRef()) {
1522  cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1523  }
1524 
1525  cprintf("\n");
1526 
1527  inst_list_it++;
1528  ++num;
1529  }
1530  }
1531 
1532  cprintf("Insts to Execute list:\n");
1533 
1534  int num = 0;
1535  int valid_num = 0;
1536  ListIt inst_list_it = instsToExecute.begin();
1537 
1538  while (inst_list_it != instsToExecute.end())
1539  {
1540  cprintf("Instruction:%i\n",
1541  num);
1542  if (!(*inst_list_it)->isSquashed()) {
1543  if (!(*inst_list_it)->isIssued()) {
1544  ++valid_num;
1545  cprintf("Count:%i\n", valid_num);
1546  } else if ((*inst_list_it)->isMemRef() &&
1547  !(*inst_list_it)->memOpDone()) {
1548  // Loads that have not been marked as executed
1549  // still count towards the total instructions.
1550  ++valid_num;
1551  cprintf("Count:%i\n", valid_num);
1552  }
1553  }
1554 
1555  cprintf("PC: %s\n[sn:%lli]\n[tid:%i]\n"
1556  "Issued:%i\nSquashed:%i\n",
1557  (*inst_list_it)->pcState(),
1558  (*inst_list_it)->seqNum,
1559  (*inst_list_it)->threadNumber,
1560  (*inst_list_it)->isIssued(),
1561  (*inst_list_it)->isSquashed());
1562 
1563  if ((*inst_list_it)->isMemRef()) {
1564  cprintf("MemOpDone:%i\n", (*inst_list_it)->memOpDone());
1565  }
1566 
1567  cprintf("\n");
1568 
1569  inst_list_it++;
1570  ++num;
1571  }
1572 }
1573 
1574 #endif//__CPU_O3_INST_QUEUE_IMPL_HH__
count
Definition: misc.hh:704
#define DPRINTF(x,...)
Definition: trace.hh:212
void regStats()
Registers statistics.
const FlagsType pdf
Print the percent of the total that this entry represents.
Definition: info.hh:51
decltype(nullptr) constexpr NoFault
Definition: types.hh:189
Cycles is a wrapper class for representing cycle counts, i.e.
Definition: types.hh:83
void doSquash(ThreadID tid)
Does the actual squashing.
void scheduleReadyInsts()
Schedules ready instructions, adding the ready ones (oldest first) to the queue to execute...
const std::string & name()
Definition: trace.cc:49
Bitfield< 7 > i
Definition: miscregs.hh:1378
void violation(DynInstPtr &store, DynInstPtr &faulting_load)
Indicates an ordering violation between a store and a load.
Impl::CPUPol::IEW IEW
Definition: inst_queue.hh:89
#define panic(...)
Definition: misc.hh:153
InstructionQueue(O3CPU *cpu_ptr, IEW *iew_ptr, DerivO3CPUParams *params)
Constructs an IQ.
void dumpInsts()
Debugging function to dump out all instructions that are in the IQ.
int wakeDependents(DynInstPtr &completed_inst)
Wakes all dependents of a completed instruction.
void insertNonSpec(DynInstPtr &new_inst)
Inserts a new, non-speculative instruction into the IQ.
Impl::DynInstPtr DynInstPtr
Definition: inst_queue.hh:87
void scheduleNonSpec(const InstSeqNum &inst)
Schedules a single specific non-speculative instruction.
DynInstPtr getInstToExecute()
Returns the oldest scheduled instruction, and removes it from the list of instructions waiting to exe...
FU completion event class.
Definition: inst_queue.hh:98
void insertBarrier(DynInstPtr &barr_inst)
Inserts a memory or write barrier into the IQ to make sure loads and stores are ordered properly...
void addToOrderList(OpClass op_class)
Add an op class to the age order list.
void setActiveThreads(std::list< ThreadID > *at_ptr)
Sets active threads list.
void setIQ(InstructionQueue< Impl > *iq_ptr)
Sets the pointer to the IQ.
unsigned numEntries
The number of entries in the instruction queue.
Definition: inst_queue.hh:432
static constexpr auto NoCapableFU
Definition: fu_pool.hh:137
virtual const char * description() const
Return a C string describing the event.
void setTimeBuffer(TimeBuffer< TimeStruct > *tb_ptr)
Sets the global time buffer.
std::vector< bool > regScoreboard
A cache of the recently woken registers.
Definition: inst_queue.hh:457
Impl::O3CPU O3CPU
Definition: inst_queue.hh:86
void processFUCompletion(DynInstPtr &inst, int fu_idx)
Process FU completion event.
bool isFull()
Returns whether or not the IQ is full.
unsigned numFreeEntries()
Returns total number of free entries.
Tick curTick()
The current simulated tick.
Definition: core.hh:47
bool hasReadyInsts()
Returns if there are any ready instructions in the IQ.
void blockMemInst(DynInstPtr &blocked_inst)
Defers a memory instruction when it is cache blocked.
void addIfReady(DynInstPtr &inst)
Moves an instruction to the ready queue if it is ready.
void completeMemInst(DynInstPtr &completed_inst)
Completes a memory operation.
IEW * iewStage
Pointer to IEW stage.
Definition: inst_queue.hh:289
void addToProducers(DynInstPtr &new_inst)
Adds an instruction to the dependency graph, as a producer.
void commit(const InstSeqNum &inst, ThreadID tid=0)
Commits all instructions up to and including the given sequence number, for a specific thread...
uint64_t InstSeqNum
Definition: inst_seq.hh:40
STL list class.
Definition: stl.hh:54
void addReadyMemInst(DynInstPtr &ready_inst)
Adds a ready memory instruction to the ready list.
void takeOverFrom()
Takes over execution from another CPU's thread.
Cycles commitToIEWDelay
Delay between commit stage and the IQ.
Definition: inst_queue.hh:446
std::string name() const
Returns the name of the IQ.
std::list< ListOrderEntry >::iterator ListOrderIt
Definition: inst_queue.hh:381
const FlagsType total
Print the total.
Definition: info.hh:49
DynInstPtr getBlockedMemInstToExecute()
Gets a memory instruction that was blocked on the cache.
void resetState()
Resets all instruction queue state.
~InstructionQueue()
Destructs the IQ.
DynInstPtr getDeferredMemInstToExecute()
Gets a memory instruction that was referred due to a delayed DTB translation if it is now ready to ex...
int16_t ThreadID
Thread index/ID type.
Definition: types.hh:171
void deferMemInst(DynInstPtr &deferred_inst)
Defers a memory instruction when its DTB translation incurs a hw page table walk. ...
void squash(ThreadID tid)
Squashes instructions for a thread.
void init(DerivO3CPUParams *params, ThreadID tid)
Initializes the unit with parameters and a thread id.
DependencyGraph< DynInstPtr > dependGraph
Definition: inst_queue.hh:400
int countInsts()
Debugging function to count how many entries are in the IQ.
int size()
Definition: pagetable.hh:146
void resetEntries()
Resets max entries for all threads.
static const OpClass Num_OpClasses
Definition: op_class.hh:92
Definition: eventq.hh:185
std::map< InstSeqNum, DynInstPtr >::iterator NonSpecMapIt
Definition: inst_queue.hh:364
int entryAmount(ThreadID num_threads)
Number of entries needed for given amount of threads.
short int PhysRegIndex
Definition: comm.hh:57
void rescheduleMemInst(DynInstPtr &resched_inst)
Reschedules a memory instruction.
int size
Definition: comm.hh:115
O3CPU * cpu
Pointer to the CPU.
Definition: inst_queue.hh:283
void drainSanityCheck() const
Perform sanity checks after a drain.
Entry for the list age ordering by op class.
Definition: inst_queue.hh:367
std::list< DynInstPtr >::iterator ListIt
Definition: inst_queue.hh:95
wire getWire(int idx)
Definition: timebuf.hh:232
unsigned maxEntries[Impl::MaxThreads]
Max IQ Entries Per Thread.
Definition: inst_queue.hh:426
void setIssueToExecuteQueue(TimeBuffer< IssueStruct > *i2eQueue)
Sets the timer buffer between issue and execute.
void cacheUnblocked()
Notify instruction queue that a previous blockage has resolved.
void moveToYoungerInst(ListOrderIt age_order_it)
Called when the oldest instruction has been removed from a ready queue; this places that ready queue ...
unsigned numPhysRegs
The number of physical registers in the CPU.
Definition: inst_queue.hh:438
MemDepUnit memDepUnit[Impl::MaxThreads]
The memory dependence unit, which tracks/predicts memory dependences between instructions.
Definition: inst_queue.hh:294
bool addToDependents(DynInstPtr &new_inst)
Adds an instruction to the dependency graph, as a consumer.
void insert(DynInstPtr &new_inst)
Inserts a new instruction into the IQ.
FUPool * fuPool
Function unit pool.
Definition: inst_queue.hh:308
FUCompletion(DynInstPtr &_inst, int fu_idx, InstructionQueue< Impl > *iq_ptr)
Construct a FU completion event.
bool isDrained() const
Determine if we are drained.
IQPolicy iqPolicy
IQ sharing policy for SMT.
Definition: inst_queue.hh:414
const FlagsType dist
Print the distribution.
Definition: info.hh:55
A standard instruction queue class.
Definition: inst_queue.hh:82
unsigned totalWidth
The total number of instructions that can be issued in one cycle.
Definition: inst_queue.hh:435
void dumpLists()
Debugging function to dump all the list sizes, as well as print out the list of nonspeculative instru...
void replayMemInst(DynInstPtr &replay_inst)
Replays a memory instruction.
ThreadID numThreads
Number of Total Threads.
Definition: inst_queue.hh:417
void cprintf(const char *format, const Args &...args)
Definition: cprintf.hh:155
static constexpr auto NoFreeFU
Definition: fu_pool.hh:138

Generated on Fri Jun 9 2017 13:03:43 for gem5 by doxygen 1.8.6