gem5
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
process.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2014 Advanced Micro Devices, Inc.
3  * Copyright (c) 2007 The Hewlett-Packard Development Company
4  * All rights reserved.
5  *
6  * The license below extends only to copyright in the software and shall
7  * not be construed as granting a license to any other intellectual
8  * property including but not limited to intellectual property relating
9  * to a hardware implementation of the functionality of the software
10  * licensed hereunder. You may use the software subject to the license
11  * terms below provided that you ensure that this notice is replicated
12  * unmodified and in its entirety in all distributions of the software,
13  * modified or unmodified, in source code or in binary form.
14  *
15  * Copyright (c) 2003-2006 The Regents of The University of Michigan
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  *
41  * Authors: Gabe Black
42  * Ali Saidi
43  */
44 
45 #include "arch/x86/process.hh"
46 
47 #include <string>
48 #include <vector>
49 
50 #include "arch/x86/isa_traits.hh"
51 #include "arch/x86/regs/misc.hh"
52 #include "arch/x86/regs/segment.hh"
53 #include "arch/x86/system.hh"
54 #include "arch/x86/types.hh"
57 #include "base/misc.hh"
58 #include "base/trace.hh"
59 #include "cpu/thread_context.hh"
60 #include "debug/Stack.hh"
62 #include "mem/page_table.hh"
63 #include "sim/aux_vector.hh"
64 #include "sim/process_impl.hh"
65 #include "sim/syscall_desc.hh"
66 #include "sim/syscall_return.hh"
67 #include "sim/system.hh"
68 
69 using namespace std;
70 using namespace X86ISA;
71 
72 static const int ArgumentReg[] = {
73  INTREG_RDI,
74  INTREG_RSI,
75  INTREG_RDX,
76  // This argument register is r10 for syscalls and rcx for C.
77  INTREG_R10W,
78  // INTREG_RCX,
79  INTREG_R8W,
80  INTREG_R9W
81 };
82 
83 static const int NumArgumentRegs M5_VAR_USED =
84  sizeof(ArgumentReg) / sizeof(const int);
85 
86 static const int ArgumentReg32[] = {
87  INTREG_EBX,
88  INTREG_ECX,
89  INTREG_EDX,
90  INTREG_ESI,
91  INTREG_EDI,
92  INTREG_EBP
93 };
94 
95 static const int NumArgumentRegs32 M5_VAR_USED =
96  sizeof(ArgumentReg) / sizeof(const int);
97 
98 X86Process::X86Process(ProcessParams * params, ObjectFile *objFile,
99  SyscallDesc *_syscallDescs, int _numSyscallDescs)
100  : Process(params, objFile), syscallDescs(_syscallDescs),
101  numSyscallDescs(_numSyscallDescs)
102 {
103 }
104 
106  Process *p, TheISA::IntReg flags)
107 {
108  Process::clone(old_tc, new_tc, p, flags);
109  X86Process *process = (X86Process*)p;
110  *process = *this;
111 }
112 
113 X86_64Process::X86_64Process(ProcessParams *params, ObjectFile *objFile,
114  SyscallDesc *_syscallDescs, int _numSyscallDescs)
115  : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
116 {
117 
118  vsyscallPage.base = 0xffffffffff600000ULL;
120  vsyscallPage.vtimeOffset = 0x400;
122 
123  Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
124  objFile->bssSize(), PageBytes);
125  Addr stack_base = 0x7FFFFFFFF000ULL;
126  Addr max_stack_size = 8 * 1024 * 1024;
127  Addr next_thread_stack_base = stack_base - max_stack_size;
128  Addr mmap_end = 0x7FFFF7FFF000ULL;
129 
130  memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
131  next_thread_stack_base, mmap_end);
132 }
133 
134 void
135 I386Process::syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
136 {
137  TheISA::PCState pc = tc->pcState();
138  Addr eip = pc.pc();
139  if (eip >= vsyscallPage.base &&
142  tc->pcState(pc);
143  }
144  X86Process::syscall(callnum, tc, fault);
145 }
146 
147 
148 I386Process::I386Process(ProcessParams *params, ObjectFile *objFile,
149  SyscallDesc *_syscallDescs, int _numSyscallDescs)
150  : X86Process(params, objFile, _syscallDescs, _numSyscallDescs)
151 {
152  _gdtStart = ULL(0xffffd000);
154 
155  vsyscallPage.base = 0xffffe000ULL;
159 
160  Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
161  objFile->bssSize(), PageBytes);
162  Addr stack_base = _gdtStart;
163  Addr max_stack_size = 8 * 1024 * 1024;
164  Addr next_thread_stack_base = stack_base - max_stack_size;
165  Addr mmap_end = 0xB7FFF000ULL;
166 
167  memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
168  next_thread_stack_base, mmap_end);
169 }
170 
173 {
174  if (callnum < 0 || callnum >= numSyscallDescs)
175  return NULL;
176  return &syscallDescs[callnum];
177 }
178 
179 void
181 {
183 
185 
186  // Set up the vsyscall page for this process.
188  uint8_t vtimeBlob[] = {
189  0x48,0xc7,0xc0,0xc9,0x00,0x00,0x00, // mov $0xc9,%rax
190  0x0f,0x05, // syscall
191  0xc3 // retq
192  };
194  vtimeBlob, sizeof(vtimeBlob));
195 
196  uint8_t vgettimeofdayBlob[] = {
197  0x48,0xc7,0xc0,0x60,0x00,0x00,0x00, // mov $0x60,%rax
198  0x0f,0x05, // syscall
199  0xc3 // retq
200  };
202  vgettimeofdayBlob, sizeof(vgettimeofdayBlob));
203 
204  if (kvmInSE) {
205  PortProxy physProxy = system->physProxy;
206 
207  /*
208  * Set up the gdt.
209  */
210  uint8_t numGDTEntries = 0;
211  uint64_t nullDescriptor = 0;
212  physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
213  (uint8_t *)(&nullDescriptor), 8);
214  numGDTEntries++;
215 
216  SegDescriptor initDesc = 0;
217  initDesc.type.codeOrData = 0; // code or data type
218  initDesc.type.c = 0; // conforming
219  initDesc.type.r = 1; // readable
220  initDesc.dpl = 0; // privilege
221  initDesc.p = 1; // present
222  initDesc.l = 1; // longmode - 64 bit
223  initDesc.d = 0; // operand size
224  initDesc.g = 1; // granularity
225  initDesc.s = 1; // system segment
226  initDesc.limitHigh = 0xFFFF;
227  initDesc.limitLow = 0xF;
228  initDesc.baseHigh = 0x0;
229  initDesc.baseLow = 0x0;
230 
231  //64 bit code segment
232  SegDescriptor csLowPLDesc = initDesc;
233  csLowPLDesc.type.codeOrData = 1;
234  csLowPLDesc.dpl = 0;
235  uint64_t csLowPLDescVal = csLowPLDesc;
236  physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
237  (uint8_t *)(&csLowPLDescVal), 8);
238 
239  numGDTEntries++;
240 
241  SegSelector csLowPL = 0;
242  csLowPL.si = numGDTEntries - 1;
243  csLowPL.rpl = 0;
244 
245  //64 bit data segment
246  SegDescriptor dsLowPLDesc = initDesc;
247  dsLowPLDesc.type.codeOrData = 0;
248  dsLowPLDesc.dpl = 0;
249  uint64_t dsLowPLDescVal = dsLowPLDesc;
250  physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
251  (uint8_t *)(&dsLowPLDescVal), 8);
252 
253  numGDTEntries++;
254 
255  SegSelector dsLowPL = 0;
256  dsLowPL.si = numGDTEntries - 1;
257  dsLowPL.rpl = 0;
258 
259  //64 bit data segment
260  SegDescriptor dsDesc = initDesc;
261  dsDesc.type.codeOrData = 0;
262  dsDesc.dpl = 3;
263  uint64_t dsDescVal = dsDesc;
264  physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
265  (uint8_t *)(&dsDescVal), 8);
266 
267  numGDTEntries++;
268 
269  SegSelector ds = 0;
270  ds.si = numGDTEntries - 1;
271  ds.rpl = 3;
272 
273  //64 bit code segment
274  SegDescriptor csDesc = initDesc;
275  csDesc.type.codeOrData = 1;
276  csDesc.dpl = 3;
277  uint64_t csDescVal = csDesc;
278  physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
279  (uint8_t *)(&csDescVal), 8);
280 
281  numGDTEntries++;
282 
283  SegSelector cs = 0;
284  cs.si = numGDTEntries - 1;
285  cs.rpl = 3;
286 
287  SegSelector scall = 0;
288  scall.si = csLowPL.si;
289  scall.rpl = 0;
290 
291  SegSelector sret = 0;
292  sret.si = dsLowPL.si;
293  sret.rpl = 3;
294 
295  /* In long mode the TSS has been extended to 16 Bytes */
296  TSSlow TSSDescLow = 0;
297  TSSDescLow.type = 0xB;
298  TSSDescLow.dpl = 0; // Privelege level 0
299  TSSDescLow.p = 1; // Present
300  TSSDescLow.g = 1; // Page granularity
301  TSSDescLow.limitHigh = 0xF;
302  TSSDescLow.limitLow = 0xFFFF;
303  TSSDescLow.baseLow = bits(TSSVirtAddr, 23, 0);
304  TSSDescLow.baseHigh = bits(TSSVirtAddr, 31, 24);
305 
306  TSShigh TSSDescHigh = 0;
307  TSSDescHigh.base = bits(TSSVirtAddr, 63, 32);
308 
309  struct TSSDesc {
310  uint64_t low;
311  uint64_t high;
312  } tssDescVal = {TSSDescLow, TSSDescHigh};
313 
314  physProxy.writeBlob(GDTPhysAddr + numGDTEntries * 8,
315  (uint8_t *)(&tssDescVal), sizeof(tssDescVal));
316 
317  numGDTEntries++;
318 
319  SegSelector tssSel = 0;
320  tssSel.si = numGDTEntries - 1;
321 
322  uint64_t tss_base_addr = (TSSDescHigh.base << 32) |
323  (TSSDescLow.baseHigh << 24) |
324  TSSDescLow.baseLow;
325  uint64_t tss_limit = TSSDescLow.limitLow | (TSSDescLow.limitHigh << 16);
326 
327  SegAttr tss_attr = 0;
328 
329  tss_attr.type = TSSDescLow.type;
330  tss_attr.dpl = TSSDescLow.dpl;
331  tss_attr.present = TSSDescLow.p;
332  tss_attr.granularity = TSSDescLow.g;
333  tss_attr.unusable = 0;
334 
335  for (int i = 0; i < contextIds.size(); i++) {
337 
338  tc->setMiscReg(MISCREG_CS, cs);
339  tc->setMiscReg(MISCREG_DS, ds);
340  tc->setMiscReg(MISCREG_ES, ds);
341  tc->setMiscReg(MISCREG_FS, ds);
342  tc->setMiscReg(MISCREG_GS, ds);
343  tc->setMiscReg(MISCREG_SS, ds);
344 
345  // LDT
346  tc->setMiscReg(MISCREG_TSL, 0);
347  SegAttr tslAttr = 0;
348  tslAttr.present = 1;
349  tslAttr.type = 2;
350  tc->setMiscReg(MISCREG_TSL_ATTR, tslAttr);
351 
353  tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
354 
355  tc->setMiscReg(MISCREG_TR, tssSel);
356  tc->setMiscReg(MISCREG_TR_BASE, tss_base_addr);
358  tc->setMiscReg(MISCREG_TR_LIMIT, tss_limit);
359  tc->setMiscReg(MISCREG_TR_ATTR, tss_attr);
360 
361  //Start using longmode segments.
362  installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
363  installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
364  installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
365  installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
366  installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
367  installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
368 
369  Efer efer = 0;
370  efer.sce = 1; // Enable system call extensions.
371  efer.lme = 1; // Enable long mode.
372  efer.lma = 1; // Activate long mode.
373  efer.nxe = 0; // Enable nx support.
374  efer.svme = 1; // Enable svm support for now.
375  efer.ffxsr = 0; // Turn on fast fxsave and fxrstor.
376  tc->setMiscReg(MISCREG_EFER, efer);
377 
378  //Set up the registers that describe the operating mode.
379  CR0 cr0 = 0;
380  cr0.pg = 1; // Turn on paging.
381  cr0.cd = 0; // Don't disable caching.
382  cr0.nw = 0; // This is bit is defined to be ignored.
383  cr0.am = 1; // No alignment checking
384  cr0.wp = 1; // Supervisor mode can write read only pages
385  cr0.ne = 1;
386  cr0.et = 1; // This should always be 1
387  cr0.ts = 0; // We don't do task switching, so causing fp exceptions
388  // would be pointless.
389  cr0.em = 0; // Allow x87 instructions to execute natively.
390  cr0.mp = 1; // This doesn't really matter, but the manual suggests
391  // setting it to one.
392  cr0.pe = 1; // We're definitely in protected mode.
393  tc->setMiscReg(MISCREG_CR0, cr0);
394 
395  CR0 cr2 = 0;
396  tc->setMiscReg(MISCREG_CR2, cr2);
397 
398  CR3 cr3 = pageTablePhysAddr;
399  tc->setMiscReg(MISCREG_CR3, cr3);
400 
401  CR4 cr4 = 0;
402  //Turn on pae.
403  cr4.osxsave = 1; // Enable XSAVE and Proc Extended States
404  cr4.osxmmexcpt = 1; // Operating System Unmasked Exception
405  cr4.osfxsr = 1; // Operating System FXSave/FSRSTOR Support
406  cr4.pce = 0; // Performance-Monitoring Counter Enable
407  cr4.pge = 0; // Page-Global Enable
408  cr4.mce = 0; // Machine Check Enable
409  cr4.pae = 1; // Physical-Address Extension
410  cr4.pse = 0; // Page Size Extensions
411  cr4.de = 0; // Debugging Extensions
412  cr4.tsd = 0; // Time Stamp Disable
413  cr4.pvi = 0; // Protected-Mode Virtual Interrupts
414  cr4.vme = 0; // Virtual-8086 Mode Extensions
415 
416  tc->setMiscReg(MISCREG_CR4, cr4);
417 
418  CR4 cr8 = 0;
419  tc->setMiscReg(MISCREG_CR8, cr8);
420 
421  const Addr PageMapLevel4 = pageTablePhysAddr;
422  //Point to the page tables.
423  tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
424 
425  tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
426 
427  tc->setMiscReg(MISCREG_APIC_BASE, 0xfee00900);
428 
430  tc->setMiscReg(MISCREG_TSG_LIMIT, 0xffff);
431 
433  tc->setMiscReg(MISCREG_IDTR_LIMIT, 0xffff);
434 
435  /* enabling syscall and sysret */
436  MiscReg star = ((MiscReg)sret << 48) | ((MiscReg)scall << 32);
437  tc->setMiscReg(MISCREG_STAR, star);
439  tc->setMiscReg(MISCREG_LSTAR, lstar);
440  MiscReg sfmask = (1 << 8) | (1 << 10); // TF | DF
441  tc->setMiscReg(MISCREG_SF_MASK, sfmask);
442  }
443 
444  /* Set up the content of the TSS and write it to physical memory. */
445 
446  struct {
447  uint32_t reserved0; // +00h
448  uint32_t RSP0_low; // +04h
449  uint32_t RSP0_high; // +08h
450  uint32_t RSP1_low; // +0Ch
451  uint32_t RSP1_high; // +10h
452  uint32_t RSP2_low; // +14h
453  uint32_t RSP2_high; // +18h
454  uint32_t reserved1; // +1Ch
455  uint32_t reserved2; // +20h
456  uint32_t IST1_low; // +24h
457  uint32_t IST1_high; // +28h
458  uint32_t IST2_low; // +2Ch
459  uint32_t IST2_high; // +30h
460  uint32_t IST3_low; // +34h
461  uint32_t IST3_high; // +38h
462  uint32_t IST4_low; // +3Ch
463  uint32_t IST4_high; // +40h
464  uint32_t IST5_low; // +44h
465  uint32_t IST5_high; // +48h
466  uint32_t IST6_low; // +4Ch
467  uint32_t IST6_high; // +50h
468  uint32_t IST7_low; // +54h
469  uint32_t IST7_high; // +58h
470  uint32_t reserved3; // +5Ch
471  uint32_t reserved4; // +60h
472  uint16_t reserved5; // +64h
473  uint16_t IO_MapBase; // +66h
474  } tss;
475 
477  uint64_t IST_start = ISTVirtAddr + PageBytes;
478  tss.IST1_low = IST_start;
479  tss.IST1_high = IST_start >> 32;
480  tss.RSP0_low = tss.IST1_low;
481  tss.RSP0_high = tss.IST1_high;
482  tss.RSP1_low = tss.IST1_low;
483  tss.RSP1_high = tss.IST1_high;
484  tss.RSP2_low = tss.IST1_low;
485  tss.RSP2_high = tss.IST1_high;
486  physProxy.writeBlob(TSSPhysAddr, (uint8_t *)(&tss), sizeof(tss));
487 
488  /* Setting IDT gates */
489  GateDescriptorLow PFGateLow = 0;
490  PFGateLow.offsetHigh = bits(PFHandlerVirtAddr, 31, 16);
491  PFGateLow.offsetLow = bits(PFHandlerVirtAddr, 15, 0);
492  PFGateLow.selector = csLowPL;
493  PFGateLow.p = 1;
494  PFGateLow.dpl = 0;
495  PFGateLow.type = 0xe; // gate interrupt type
496  PFGateLow.IST = 0; // setting IST to 0 and using RSP0
497 
498  GateDescriptorHigh PFGateHigh = 0;
499  PFGateHigh.offset = bits(PFHandlerVirtAddr, 63, 32);
500 
501  struct {
502  uint64_t low;
503  uint64_t high;
504  } PFGate = {PFGateLow, PFGateHigh};
505 
506  physProxy.writeBlob(IDTPhysAddr + 0xE0,
507  (uint8_t *)(&PFGate), sizeof(PFGate));
508 
509  /* System call handler */
510  uint8_t syscallBlob[] = {
511  // mov %rax, (0xffffc90000005600)
512  0x48, 0xa3, 0x00, 0x60, 0x00,
513  0x00, 0x00, 0xc9, 0xff, 0xff,
514  // sysret
515  0x48, 0x0f, 0x07
516  };
517 
518  physProxy.writeBlob(syscallCodePhysAddr,
519  syscallBlob, sizeof(syscallBlob));
520 
522  uint8_t faultBlob[] = {
523  // mov %rax, (0xffffc90000005700)
524  0x48, 0xa3, 0x00, 0x61, 0x00,
525  0x00, 0x00, 0xc9, 0xff, 0xff,
526  // add $0x8, %rsp # skip error
527  0x48, 0x83, 0xc4, 0x08,
528  // iretq
529  0x48, 0xcf
530  };
531 
532  physProxy.writeBlob(PFHandlerPhysAddr, faultBlob, sizeof(faultBlob));
533 
535  dynamic_cast<MultiLevelPageTable<PageTableOps> *>(pTable);
536 
537  /* Syscall handler */
538  pt->map(syscallCodeVirtAddr, syscallCodePhysAddr, PageBytes, false);
539  /* GDT */
540  pt->map(GDTVirtAddr, GDTPhysAddr, PageBytes, false);
541  /* IDT */
542  pt->map(IDTVirtAddr, IDTPhysAddr, PageBytes, false);
543  /* TSS */
544  pt->map(TSSVirtAddr, TSSPhysAddr, PageBytes, false);
545  /* IST */
546  pt->map(ISTVirtAddr, ISTPhysAddr, PageBytes, false);
547  /* PF handler */
548  pt->map(PFHandlerVirtAddr, PFHandlerPhysAddr, PageBytes, false);
549  /* MMIO region for m5ops */
550  pt->map(MMIORegionVirtAddr, MMIORegionPhysAddr, 16*PageBytes, false);
551  } else {
552  for (int i = 0; i < contextIds.size(); i++) {
554 
555  SegAttr dataAttr = 0;
556  dataAttr.dpl = 3;
557  dataAttr.unusable = 0;
558  dataAttr.defaultSize = 1;
559  dataAttr.longMode = 1;
560  dataAttr.avl = 0;
561  dataAttr.granularity = 1;
562  dataAttr.present = 1;
563  dataAttr.type = 3;
564  dataAttr.writable = 1;
565  dataAttr.readable = 1;
566  dataAttr.expandDown = 0;
567  dataAttr.system = 1;
568 
569  // Initialize the segment registers.
570  for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
573  tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
574  }
575 
576  SegAttr csAttr = 0;
577  csAttr.dpl = 3;
578  csAttr.unusable = 0;
579  csAttr.defaultSize = 0;
580  csAttr.longMode = 1;
581  csAttr.avl = 0;
582  csAttr.granularity = 1;
583  csAttr.present = 1;
584  csAttr.type = 10;
585  csAttr.writable = 0;
586  csAttr.readable = 1;
587  csAttr.expandDown = 0;
588  csAttr.system = 1;
589 
590  tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
591 
592  Efer efer = 0;
593  efer.sce = 1; // Enable system call extensions.
594  efer.lme = 1; // Enable long mode.
595  efer.lma = 1; // Activate long mode.
596  efer.nxe = 1; // Enable nx support.
597  efer.svme = 0; // Disable svm support for now. It isn't implemented.
598  efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
599  tc->setMiscReg(MISCREG_EFER, efer);
600 
601  // Set up the registers that describe the operating mode.
602  CR0 cr0 = 0;
603  cr0.pg = 1; // Turn on paging.
604  cr0.cd = 0; // Don't disable caching.
605  cr0.nw = 0; // This is bit is defined to be ignored.
606  cr0.am = 0; // No alignment checking
607  cr0.wp = 0; // Supervisor mode can write read only pages
608  cr0.ne = 1;
609  cr0.et = 1; // This should always be 1
610  cr0.ts = 0; // We don't do task switching, so causing fp exceptions
611  // would be pointless.
612  cr0.em = 0; // Allow x87 instructions to execute natively.
613  cr0.mp = 1; // This doesn't really matter, but the manual suggests
614  // setting it to one.
615  cr0.pe = 1; // We're definitely in protected mode.
616  tc->setMiscReg(MISCREG_CR0, cr0);
617 
618  tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
619  }
620  }
621 }
622 
623 void
625 {
627 
629 
630  /*
631  * Set up a GDT for this process. The whole GDT wouldn't really be for
632  * this process, but the only parts we care about are.
633  */
635  uint64_t zero = 0;
636  assert(_gdtSize % sizeof(zero) == 0);
637  for (Addr gdtCurrent = _gdtStart;
638  gdtCurrent < _gdtStart + _gdtSize; gdtCurrent += sizeof(zero)) {
639  initVirtMem.write(gdtCurrent, zero);
640  }
641 
642  // Set up the vsyscall page for this process.
644  uint8_t vsyscallBlob[] = {
645  0x51, // push %ecx
646  0x52, // push %edp
647  0x55, // push %ebp
648  0x89, 0xe5, // mov %esp, %ebp
649  0x0f, 0x34 // sysenter
650  };
652  vsyscallBlob, sizeof(vsyscallBlob));
653 
654  uint8_t vsysexitBlob[] = {
655  0x5d, // pop %ebp
656  0x5a, // pop %edx
657  0x59, // pop %ecx
658  0xc3 // ret
659  };
661  vsysexitBlob, sizeof(vsysexitBlob));
662 
663  for (int i = 0; i < contextIds.size(); i++) {
665 
666  SegAttr dataAttr = 0;
667  dataAttr.dpl = 3;
668  dataAttr.unusable = 0;
669  dataAttr.defaultSize = 1;
670  dataAttr.longMode = 0;
671  dataAttr.avl = 0;
672  dataAttr.granularity = 1;
673  dataAttr.present = 1;
674  dataAttr.type = 3;
675  dataAttr.writable = 1;
676  dataAttr.readable = 1;
677  dataAttr.expandDown = 0;
678  dataAttr.system = 1;
679 
680  // Initialize the segment registers.
681  for (int seg = 0; seg < NUM_SEGMENTREGS; seg++) {
684  tc->setMiscRegNoEffect(MISCREG_SEG_ATTR(seg), dataAttr);
686  tc->setMiscRegNoEffect(MISCREG_SEG_LIMIT(seg), (uint32_t)(-1));
687  }
688 
689  SegAttr csAttr = 0;
690  csAttr.dpl = 3;
691  csAttr.unusable = 0;
692  csAttr.defaultSize = 1;
693  csAttr.longMode = 0;
694  csAttr.avl = 0;
695  csAttr.granularity = 1;
696  csAttr.present = 1;
697  csAttr.type = 0xa;
698  csAttr.writable = 0;
699  csAttr.readable = 1;
700  csAttr.expandDown = 0;
701  csAttr.system = 1;
702 
703  tc->setMiscRegNoEffect(MISCREG_CS_ATTR, csAttr);
704 
707  tc->setMiscRegNoEffect(MISCREG_TSG_LIMIT, _gdtStart + _gdtSize - 1);
708 
709  // Set the LDT selector to 0 to deactivate it.
711 
712  Efer efer = 0;
713  efer.sce = 1; // Enable system call extensions.
714  efer.lme = 1; // Enable long mode.
715  efer.lma = 0; // Deactivate long mode.
716  efer.nxe = 1; // Enable nx support.
717  efer.svme = 0; // Disable svm support for now. It isn't implemented.
718  efer.ffxsr = 1; // Turn on fast fxsave and fxrstor.
719  tc->setMiscReg(MISCREG_EFER, efer);
720 
721  // Set up the registers that describe the operating mode.
722  CR0 cr0 = 0;
723  cr0.pg = 1; // Turn on paging.
724  cr0.cd = 0; // Don't disable caching.
725  cr0.nw = 0; // This is bit is defined to be ignored.
726  cr0.am = 0; // No alignment checking
727  cr0.wp = 0; // Supervisor mode can write read only pages
728  cr0.ne = 1;
729  cr0.et = 1; // This should always be 1
730  cr0.ts = 0; // We don't do task switching, so causing fp exceptions
731  // would be pointless.
732  cr0.em = 0; // Allow x87 instructions to execute natively.
733  cr0.mp = 1; // This doesn't really matter, but the manual suggests
734  // setting it to one.
735  cr0.pe = 1; // We're definitely in protected mode.
736  tc->setMiscReg(MISCREG_CR0, cr0);
737 
738  tc->setMiscReg(MISCREG_MXCSR, 0x1f80);
739  }
740 }
741 
742 template<class IntType>
743 void
744 X86Process::argsInit(int pageSize,
745  std::vector<AuxVector<IntType> > extraAuxvs)
746 {
747  int intSize = sizeof(IntType);
748 
749  typedef AuxVector<IntType> auxv_t;
750  std::vector<auxv_t> auxv = extraAuxvs;
751 
752  string filename;
753  if (argv.size() < 1)
754  filename = "";
755  else
756  filename = argv[0];
757 
758  // We want 16 byte alignment
759  uint64_t align = 16;
760 
761  // Patch the ld_bias for dynamic executables.
762  updateBias();
763 
764  // load object file into target memory
766 
767  enum X86CpuFeature {
768  X86_OnboardFPU = 1 << 0,
769  X86_VirtualModeExtensions = 1 << 1,
770  X86_DebuggingExtensions = 1 << 2,
771  X86_PageSizeExtensions = 1 << 3,
772 
773  X86_TimeStampCounter = 1 << 4,
774  X86_ModelSpecificRegisters = 1 << 5,
775  X86_PhysicalAddressExtensions = 1 << 6,
776  X86_MachineCheckExtensions = 1 << 7,
777 
778  X86_CMPXCHG8Instruction = 1 << 8,
779  X86_OnboardAPIC = 1 << 9,
780  X86_SYSENTER_SYSEXIT = 1 << 11,
781 
782  X86_MemoryTypeRangeRegisters = 1 << 12,
783  X86_PageGlobalEnable = 1 << 13,
784  X86_MachineCheckArchitecture = 1 << 14,
785  X86_CMOVInstruction = 1 << 15,
786 
787  X86_PageAttributeTable = 1 << 16,
788  X86_36BitPSEs = 1 << 17,
789  X86_ProcessorSerialNumber = 1 << 18,
790  X86_CLFLUSHInstruction = 1 << 19,
791 
792  X86_DebugTraceStore = 1 << 21,
793  X86_ACPIViaMSR = 1 << 22,
794  X86_MultimediaExtensions = 1 << 23,
795 
796  X86_FXSAVE_FXRSTOR = 1 << 24,
797  X86_StreamingSIMDExtensions = 1 << 25,
798  X86_StreamingSIMDExtensions2 = 1 << 26,
799  X86_CPUSelfSnoop = 1 << 27,
800 
801  X86_HyperThreading = 1 << 28,
802  X86_AutomaticClockControl = 1 << 29,
803  X86_IA64Processor = 1 << 30
804  };
805 
806  // Setup the auxiliary vectors. These will already have endian
807  // conversion. Auxiliary vectors are loaded only for elf formatted
808  // executables; the auxv is responsible for passing information from
809  // the OS to the interpreter.
810  ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
811  if (elfObject) {
812  uint64_t features =
813  X86_OnboardFPU |
814  X86_VirtualModeExtensions |
815  X86_DebuggingExtensions |
816  X86_PageSizeExtensions |
817  X86_TimeStampCounter |
818  X86_ModelSpecificRegisters |
819  X86_PhysicalAddressExtensions |
820  X86_MachineCheckExtensions |
821  X86_CMPXCHG8Instruction |
822  X86_OnboardAPIC |
823  X86_SYSENTER_SYSEXIT |
824  X86_MemoryTypeRangeRegisters |
825  X86_PageGlobalEnable |
826  X86_MachineCheckArchitecture |
827  X86_CMOVInstruction |
828  X86_PageAttributeTable |
829  X86_36BitPSEs |
830 // X86_ProcessorSerialNumber |
831  X86_CLFLUSHInstruction |
832 // X86_DebugTraceStore |
833 // X86_ACPIViaMSR |
834  X86_MultimediaExtensions |
835  X86_FXSAVE_FXRSTOR |
836  X86_StreamingSIMDExtensions |
837  X86_StreamingSIMDExtensions2 |
838 // X86_CPUSelfSnoop |
839 // X86_HyperThreading |
840 // X86_AutomaticClockControl |
841 // X86_IA64Processor |
842  0;
843 
844  // Bits which describe the system hardware capabilities
845  // XXX Figure out what these should be
846  auxv.push_back(auxv_t(M5_AT_HWCAP, features));
847  // The system page size
848  auxv.push_back(auxv_t(M5_AT_PAGESZ, X86ISA::PageBytes));
849  // Frequency at which times() increments
850  // Defined to be 100 in the kernel source.
851  auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
852  // This is the virtual address of the program header tables if they
853  // appear in the executable image.
854  auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
855  // This is the size of a program header entry from the elf file.
856  auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
857  // This is the number of program headers from the original elf file.
858  auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
859  // This is the base address of the ELF interpreter; it should be
860  // zero for static executables or contain the base address for
861  // dynamic executables.
862  auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
863  // XXX Figure out what this should be.
864  auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
865  // The entry point to the program
866  auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
867  // Different user and group IDs
868  auxv.push_back(auxv_t(M5_AT_UID, uid()));
869  auxv.push_back(auxv_t(M5_AT_EUID, euid()));
870  auxv.push_back(auxv_t(M5_AT_GID, gid()));
871  auxv.push_back(auxv_t(M5_AT_EGID, egid()));
872  // Whether to enable "secure mode" in the executable
873  auxv.push_back(auxv_t(M5_AT_SECURE, 0));
874  // The address of 16 "random" bytes.
875  auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
876  // The name of the program
877  auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
878  // The platform string
879  auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
880  }
881 
882  // Figure out how big the initial stack needs to be
883 
884  // A sentry NULL void pointer at the top of the stack.
885  int sentry_size = intSize;
886 
887  // This is the name of the file which is present on the initial stack
888  // It's purpose is to let the user space linker examine the original file.
889  int file_name_size = filename.size() + 1;
890 
891  const int numRandomBytes = 16;
892  int aux_data_size = numRandomBytes;
893 
894  string platform = "x86_64";
895  aux_data_size += platform.size() + 1;
896 
897  int env_data_size = 0;
898  for (int i = 0; i < envp.size(); ++i)
899  env_data_size += envp[i].size() + 1;
900  int arg_data_size = 0;
901  for (int i = 0; i < argv.size(); ++i)
902  arg_data_size += argv[i].size() + 1;
903 
904  // The info_block needs to be padded so its size is a multiple of the
905  // alignment mask. Also, it appears that there needs to be at least some
906  // padding, so if the size is already a multiple, we need to increase it
907  // anyway.
908  int base_info_block_size =
909  sentry_size + file_name_size + env_data_size + arg_data_size;
910 
911  int info_block_size = roundUp(base_info_block_size, align);
912 
913  int info_block_padding = info_block_size - base_info_block_size;
914 
915  // Each auxiliary vector is two 8 byte words
916  int aux_array_size = intSize * 2 * (auxv.size() + 1);
917 
918  int envp_array_size = intSize * (envp.size() + 1);
919  int argv_array_size = intSize * (argv.size() + 1);
920 
921  int argc_size = intSize;
922 
923  // Figure out the size of the contents of the actual initial frame
924  int frame_size =
925  aux_array_size +
926  envp_array_size +
927  argv_array_size +
928  argc_size;
929 
930  // There needs to be padding after the auxiliary vector data so that the
931  // very bottom of the stack is aligned properly.
932  int partial_size = frame_size + aux_data_size;
933  int aligned_partial_size = roundUp(partial_size, align);
934  int aux_padding = aligned_partial_size - partial_size;
935 
936  int space_needed =
937  info_block_size +
938  aux_data_size +
939  aux_padding +
940  frame_size;
941 
942  Addr stack_base = memState->getStackBase();
943 
944  Addr stack_min = stack_base - space_needed;
945  stack_min = roundDown(stack_min, align);
946 
947  unsigned stack_size = stack_base - stack_min;
948  stack_size = roundUp(stack_size, pageSize);
949  memState->setStackSize(stack_size);
950 
951  // map memory
952  Addr stack_end = roundDown(stack_base - stack_size, pageSize);
953 
954  DPRINTF(Stack, "Mapping the stack: 0x%x %dB\n", stack_end, stack_size);
955  allocateMem(stack_end, stack_size);
956 
957  // map out initial stack contents
958  IntType sentry_base = stack_base - sentry_size;
959  IntType file_name_base = sentry_base - file_name_size;
960  IntType env_data_base = file_name_base - env_data_size;
961  IntType arg_data_base = env_data_base - arg_data_size;
962  IntType aux_data_base = arg_data_base - info_block_padding - aux_data_size;
963  IntType auxv_array_base = aux_data_base - aux_array_size - aux_padding;
964  IntType envp_array_base = auxv_array_base - envp_array_size;
965  IntType argv_array_base = envp_array_base - argv_array_size;
966  IntType argc_base = argv_array_base - argc_size;
967 
968  DPRINTF(Stack, "The addresses of items on the initial stack:\n");
969  DPRINTF(Stack, "0x%x - file name\n", file_name_base);
970  DPRINTF(Stack, "0x%x - env data\n", env_data_base);
971  DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
972  DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
973  DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
974  DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
975  DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
976  DPRINTF(Stack, "0x%x - argc \n", argc_base);
977  DPRINTF(Stack, "0x%x - stack min\n", stack_min);
978 
979  // write contents to stack
980 
981  // figure out argc
982  IntType argc = argv.size();
983  IntType guestArgc = X86ISA::htog(argc);
984 
985  // Write out the sentry void *
986  IntType sentry_NULL = 0;
987  initVirtMem.writeBlob(sentry_base, (uint8_t*)&sentry_NULL, sentry_size);
988 
989  // Write the file name
990  initVirtMem.writeString(file_name_base, filename.c_str());
991 
992  // Fix up the aux vectors which point to data
993  assert(auxv[auxv.size() - 3].a_type == M5_AT_RANDOM);
994  auxv[auxv.size() - 3].a_val = aux_data_base;
995  assert(auxv[auxv.size() - 2].a_type == M5_AT_EXECFN);
996  auxv[auxv.size() - 2].a_val = argv_array_base;
997  assert(auxv[auxv.size() - 1].a_type == M5_AT_PLATFORM);
998  auxv[auxv.size() - 1].a_val = aux_data_base + numRandomBytes;
999 
1000 
1001  // Copy the aux stuff
1002  for (int x = 0; x < auxv.size(); x++) {
1003  initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
1004  (uint8_t*)&(auxv[x].a_type), intSize);
1005  initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
1006  (uint8_t*)&(auxv[x].a_val), intSize);
1007  }
1008  // Write out the terminating zeroed auxiliary vector
1009  const uint64_t zero = 0;
1010  initVirtMem.writeBlob(auxv_array_base + auxv.size() * 2 * intSize,
1011  (uint8_t*)&zero, intSize);
1012  initVirtMem.writeBlob(auxv_array_base + (auxv.size() * 2 + 1) * intSize,
1013  (uint8_t*)&zero, intSize);
1014 
1015  initVirtMem.writeString(aux_data_base, platform.c_str());
1016 
1017  copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
1018  copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
1019 
1020  initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
1021 
1023  // Set the stack pointer register
1024  tc->setIntReg(StackPointerReg, stack_min);
1025 
1026  // There doesn't need to be any segment base added in since we're dealing
1027  // with the flat segmentation model.
1028  tc->pcState(getStartPC());
1029 
1030  // Align the "stack_min" to a page boundary.
1031  memState->setStackMin(roundDown(stack_min, pageSize));
1032 }
1033 
1034 void
1036 {
1037  std::vector<AuxVector<uint64_t> > extraAuxvs;
1038  extraAuxvs.push_back(AuxVector<uint64_t>(M5_AT_SYSINFO_EHDR,
1039  vsyscallPage.base));
1040  X86Process::argsInit<uint64_t>(pageSize, extraAuxvs);
1041 }
1042 
1043 void
1045 {
1046  std::vector<AuxVector<uint32_t> > extraAuxvs;
1047  //Tell the binary where the vsyscall part of the vsyscall page is.
1048  extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO,
1050  extraAuxvs.push_back(AuxVector<uint32_t>(M5_AT_SYSINFO_EHDR,
1051  vsyscallPage.base));
1052  X86Process::argsInit<uint32_t>(pageSize, extraAuxvs);
1053 }
1054 
1055 void
1057 {
1058  tc->setIntReg(INTREG_RAX, retval.encodedValue());
1059 }
1060 
1063 {
1064  assert(i < NumArgumentRegs);
1065  return tc->readIntReg(ArgumentReg[i++]);
1066 }
1067 
1068 void
1070 {
1071  assert(i < NumArgumentRegs);
1072  return tc->setIntReg(ArgumentReg[i], val);
1073 }
1074 
1075 void
1077  Process *p, TheISA::IntReg flags)
1078 {
1079  X86Process::clone(old_tc, new_tc, p, flags);
1080  ((X86_64Process*)p)->vsyscallPage = vsyscallPage;
1081 }
1082 
1085 {
1086  assert(i < NumArgumentRegs32);
1087  return tc->readIntReg(ArgumentReg32[i++]);
1088 }
1089 
1092 {
1093  assert(width == 32 || width == 64);
1094  assert(i < NumArgumentRegs);
1095  uint64_t retVal = tc->readIntReg(ArgumentReg32[i++]) & mask(32);
1096  if (width == 64)
1097  retVal |= ((uint64_t)tc->readIntReg(ArgumentReg[i++]) << 32);
1098  return retVal;
1099 }
1100 
1101 void
1103 {
1104  assert(i < NumArgumentRegs);
1105  return tc->setIntReg(ArgumentReg[i], val);
1106 }
1107 
1108 void
1110  Process *p, TheISA::IntReg flags)
1111 {
1112  X86Process::clone(old_tc, new_tc, p, flags);
1113  ((I386Process*)p)->vsyscallPage = vsyscallPage;
1114 }
Addr dataBase() const
Definition: object_file.hh:139
#define DPRINTF(x,...)
Definition: trace.hh:212
VSyscallPage vsyscallPage
Definition: process.hh:172
ObjectFile * objFile
Definition: process.hh:182
T htog(T value)
Definition: byteswap.hh:177
void installSegDesc(ThreadContext *tc, SegmentRegIndex seg, SegDescriptor desc, bool longmode)
Definition: system.cc:61
Addr programHeaderTable()
Definition: elf_object.hh:129
const uint64_t PFHandlerPhysAddr
Definition: system.hh:77
Bitfield< 7 > i
Definition: miscregs.hh:1378
void setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
Definition: process.cc:1102
void argsInit(int pageSize)
Definition: process.cc:1044
const uint64_t syscallCodeVirtAddr
Definition: system.hh:66
void clone(ThreadContext *old_tc, ThreadContext *new_tc, Process *process, TheISA::IntReg flags)
Definition: process.cc:1076
void syscall(int64_t callnum, ThreadContext *tc, Fault *fault) override
Definition: process.cc:135
void clone(ThreadContext *old_tc, ThreadContext *new_tc, Process *process, TheISA::IntReg flags)
Definition: process.cc:105
void write(Addr address, T data) const
Write object T to address.
Definition: port_proxy.hh:155
std::vector< ContextID > contextIds
Definition: process.hh:168
void allocateMem(Addr vaddr, int64_t size, bool clobber=false)
Definition: process.cc:310
SETranslatingPortProxy initVirtMem
Definition: process.hh:180
uint64_t uid()
Definition: process.hh:83
void argsInit(int pageSize, std::vector< AuxVector< IntType > > extraAuxvs)
Definition: process.cc:744
const uint64_t MMIORegionPhysAddr
Definition: system.hh:79
virtual void setMiscReg(int misc_reg, const MiscReg &val)=0
void setSyscallArg(ThreadContext *tc, int i, X86ISA::IntReg val)
Definition: process.cc:1069
virtual void setIntReg(int reg_idx, uint64_t val)=0
void initState() override
initState() is called on each SimObject when not restoring from a checkpoint.
Definition: process.cc:288
virtual TheISA::PCState pcState()=0
const Addr PageBytes
Definition: isa_traits.hh:64
Bitfield< 19 > pc
Definition: misc.hh:806
Declaration of a multi-level page table.
T roundUp(const T &val, const U &align)
Definition: intmath.hh:205
X86_64Process(ProcessParams *params, ObjectFile *objFile, SyscallDesc *_syscallDescs, int _numSyscallDescs)
Definition: process.cc:113
std::shared_ptr< MemState > memState
Definition: process.hh:206
const int numSyscallDescs
Definition: process.hh:66
const uint64_t GDTPhysAddr
Definition: system.hh:69
ThreadContext is the external interface to all thread state for anything outside of the CPU...
const int StackPointerReg
Definition: registers.hh:82
const uint64_t ISTVirtAddr
Definition: system.hh:74
STL vector class.
Definition: stl.hh:40
const uint64_t pageTablePhysAddr
Definition: system.hh:81
Bitfield< 63 > val
Definition: misc.hh:770
const uint64_t TSSVirtAddr
Definition: system.hh:72
void argsInit(int pageSize)
Definition: process.cc:1035
X86ISA::IntReg getSyscallArg(ThreadContext *tc, int &i)
Definition: process.cc:1084
PortProxy physProxy
Port to physical memory used for writing object files into ram at boot.
Definition: system.hh:224
virtual uint64_t readIntReg(int reg_idx)=0
void initState()
initState() is called on each SimObject when not restoring from a checkpoint.
Definition: process.cc:624
static MiscRegIndex MISCREG_SEG_ATTR(int index)
Definition: misc.hh:534
static MiscRegIndex MISCREG_SEG_LIMIT(int index)
Definition: misc.hh:527
const uint64_t GDTVirtAddr
Definition: system.hh:68
void setSyscallReturn(ThreadContext *tc, SyscallReturn return_value)
Definition: process.cc:1056
const uint64_t MMIORegionVirtAddr
Definition: system.hh:78
void initState()
initState() is called on each SimObject when not restoring from a checkpoint.
Definition: process.cc:180
mask
Definition: misc.hh:797
uint64_t euid()
Definition: process.hh:84
const uint64_t syscallCodePhysAddr
Definition: system.hh:67
Addr getStartPC()
Definition: process.cc:482
static const int ArgumentReg32[]
Definition: process.cc:86
System * system
Definition: process.hh:171
static const int ArgumentReg[]
Definition: process.cc:72
T roundDown(const T &val, const U &align)
Definition: intmath.hh:213
const int NumArgumentRegs
Definition: registers.hh:95
Addr entryPoint() const
Definition: object_file.hh:134
bool kvmInSE
Definition: process.hh:176
std::vector< std::string > envp
Definition: process.hh:184
ThreadContext * getThreadContext(ContextID tid)
Definition: system.hh:203
void clone(ThreadContext *old_tc, ThreadContext *new_tc, Process *process, TheISA::IntReg flags)
Definition: process.cc:1109
static MiscRegIndex MISCREG_SEG_SEL(int index)
Definition: misc.hh:506
Bitfield< 2, 0 > seg
Definition: types.hh:84
const uint64_t PFHandlerVirtAddr
Definition: system.hh:76
uint64_t Addr
Address type This will probably be moved somewhere else in the near future.
Definition: types.hh:142
#define ULL(N)
uint64_t constant
Definition: types.hh:50
virtual bool loadSections(PortProxy &mem_proxy, Addr mask=maxAddr, Addr offset=0)
Definition: object_file.cc:93
size_t dataSize() const
Definition: object_file.hh:143
const uint64_t ISTPhysAddr
Definition: system.hh:75
virtual void syscall(int64_t callnum, ThreadContext *tc, Fault *fault)
Definition: process.cc:413
const uint64_t IDTVirtAddr
Definition: system.hh:70
X86ISA::IntReg getSyscallArg(ThreadContext *tc, int &i)
Definition: process.cc:1062
VSyscallPage vsyscallPage
Definition: process.hh:130
PageTableBase * pTable
Definition: process.hh:178
uint16_t programHeaderSize()
Definition: elf_object.hh:130
void copyStringArray(std::vector< std::string > &strings, AddrType array_ptr, AddrType data_ptr, SETranslatingPortProxy &memProxy)
Definition: process_impl.hh:43
uint64_t IntReg
Definition: registers.hh:47
This class provides the wrapper interface for the system call implementations which are defined in th...
Definition: syscall_desc.hh:63
void writeString(Addr addr, const char *str) const
static const int NumArgumentRegs M5_VAR_USED
Definition: process.cc:83
void map(Addr vaddr, Addr paddr, int64_t size, uint64_t flags=0) override
Maps a virtual memory region to a physical memory region.
This object is a proxy for a structural port, to be used for debug accesses.
Definition: port_proxy.hh:84
int size()
Definition: pagetable.hh:146
Declarations of a non-full system Page Table.
static MiscRegIndex MISCREG_SEG_BASE(int index)
Definition: misc.hh:513
uint64_t MiscReg
Definition: registers.hh:94
This class implements an in-memory multi-level page table that can be configured to follow ISA specif...
uint16_t programHeaderCount()
Definition: elf_object.hh:131
const uint64_t IDTPhysAddr
Definition: system.hh:71
void updateBias()
Definition: process.cc:442
GenericISA::SimplePCState< MachInst > PCState
Definition: types.hh:43
SyscallDesc * syscallDescs
Definition: process.hh:65
int64_t encodedValue() const
The encoded value (as described above)
virtual void writeBlob(Addr addr, const uint8_t *p, int size) const
Write size bytes from p to address.
Definition: port_proxy.cc:58
size_t bssSize() const
Definition: object_file.hh:144
Bitfield< 4 > width
Definition: miscregs.hh:1383
uint64_t gid()
Definition: process.hh:85
static MiscRegIndex MISCREG_SEG_EFF_BASE(int index)
Definition: misc.hh:520
SyscallDesc * getDesc(int callnum)
Definition: process.cc:172
const uint64_t TSSPhysAddr
Definition: system.hh:73
Bitfield< 0 > p
Definition: pagetable.hh:95
std::vector< std::string > argv
Definition: process.hh:183
I386Process(ProcessParams *params, ObjectFile *objFile, SyscallDesc *_syscallDescs, int _numSyscallDescs)
Definition: process.cc:148
This class represents the return value from an emulated system call, including any errno setting...
uint64_t IntReg
Definition: registers.hh:92
T bits(T val, int first, int last)
Extract the bitfield from position 'first' to 'last' (inclusive) from 'val' and right justify it...
Definition: bitfield.hh:67
void clone(ThreadContext *old_tc, ThreadContext *new_tc, Process *new_p, TheISA::IntReg flags)
Definition: process.cc:160
virtual void setMiscRegNoEffect(int misc_reg, const MiscReg &val)=0
Bitfield< 15, 13 > ds
Bitfield< 1 > x
Definition: types.hh:105
std::shared_ptr< FaultBase > Fault
Definition: types.hh:184
Addr getBias()
Definition: process.cc:474
uint64_t egid()
Definition: process.hh:86
virtual void writeBlob(Addr addr, const uint8_t *p, int size) const
Write size bytes from p to address.

Generated on Fri Jun 9 2017 13:03:35 for gem5 by doxygen 1.8.6