gem5
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
RubyPort.cc
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2012-2013 ARM Limited
3  * All rights reserved.
4  *
5  * The license below extends only to copyright in the software and shall
6  * not be construed as granting a license to any other intellectual
7  * property including but not limited to intellectual property relating
8  * to a hardware implementation of the functionality of the software
9  * licensed hereunder. You may use the software subject to the license
10  * terms below provided that you ensure that this notice is replicated
11  * unmodified and in its entirety in all distributions of the software,
12  * modified or unmodified, in source code or in binary form.
13  *
14  * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
15  * Copyright (c) 2011 Mark D. Hill and David A. Wood
16  * All rights reserved.
17  *
18  * Redistribution and use in source and binary forms, with or without
19  * modification, are permitted provided that the following conditions are
20  * met: redistributions of source code must retain the above copyright
21  * notice, this list of conditions and the following disclaimer;
22  * redistributions in binary form must reproduce the above copyright
23  * notice, this list of conditions and the following disclaimer in the
24  * documentation and/or other materials provided with the distribution;
25  * neither the name of the copyright holders nor the names of its
26  * contributors may be used to endorse or promote products derived from
27  * this software without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40  */
41 
43 
45 #include "debug/Config.hh"
46 #include "debug/Drain.hh"
47 #include "debug/Ruby.hh"
48 #include "mem/protocol/AccessPermission.hh"
50 #include "mem/simple_mem.hh"
51 #include "sim/full_system.hh"
52 #include "sim/system.hh"
53 
55  : MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
56  m_controller(NULL), m_mandatory_q_ptr(NULL),
57  m_usingRubyTester(p->using_ruby_tester), system(p->system),
58  pioMasterPort(csprintf("%s.pio-master-port", name()), this),
59  pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
60  memMasterPort(csprintf("%s.mem-master-port", name()), this),
61  memSlavePort(csprintf("%s-mem-slave-port", name()), this,
62  p->ruby_system->getAccessBackingStore(), -1,
63  p->no_retry_on_stall),
64  gotAddrRanges(p->port_master_connection_count),
65  m_isCPUSequencer(p->is_cpu_sequencer)
66 {
67  assert(m_version != -1);
68 
69  // create the slave ports based on the number of connected ports
70  for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
71  slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
72  i), this, p->ruby_system->getAccessBackingStore(),
73  i, p->no_retry_on_stall));
74  }
75 
76  // create the master ports based on the number of connected ports
77  for (size_t i = 0; i < p->port_master_connection_count; ++i) {
78  master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
79  name(), i), this));
80  }
81 }
82 
83 void
85 {
86  assert(m_controller != NULL);
88 }
89 
91 RubyPort::getMasterPort(const std::string &if_name, PortID idx)
92 {
93  if (if_name == "mem_master_port") {
94  return memMasterPort;
95  }
96 
97  if (if_name == "pio_master_port") {
98  return pioMasterPort;
99  }
100 
101  // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
102  // port
103  if (if_name != "master") {
104  // pass it along to our super class
105  return MemObject::getMasterPort(if_name, idx);
106  } else {
107  if (idx >= static_cast<PortID>(master_ports.size())) {
108  panic("RubyPort::getMasterPort: unknown index %d\n", idx);
109  }
110 
111  return *master_ports[idx];
112  }
113 }
114 
116 RubyPort::getSlavePort(const std::string &if_name, PortID idx)
117 {
118  if (if_name == "mem_slave_port") {
119  return memSlavePort;
120  }
121 
122  if (if_name == "pio_slave_port")
123  return pioSlavePort;
124 
125  // used by the CPUs to connect the caches to the interconnect, and
126  // for the x86 case also the interrupt master
127  if (if_name != "slave") {
128  // pass it along to our super class
129  return MemObject::getSlavePort(if_name, idx);
130  } else {
131  if (idx >= static_cast<PortID>(slave_ports.size())) {
132  panic("RubyPort::getSlavePort: unknown index %d\n", idx);
133  }
134 
135  return *slave_ports[idx];
136  }
137 }
138 
139 RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
140  RubyPort *_port)
141  : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
142  reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
143 {
144  DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
145 }
146 
147 RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
148  RubyPort *_port)
149  : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
150 {
151  DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
152 }
153 
154 RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
155  RubyPort *_port)
156  : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
157  reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
158 {
159  DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
160 }
161 
162 RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
163  bool _access_backing_store, PortID id,
164  bool _no_retry_on_stall)
165  : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
166  access_backing_store(_access_backing_store),
167  no_retry_on_stall(_no_retry_on_stall)
168 {
169  DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
170 }
171 
172 bool
174 {
175  RubyPort *rp = static_cast<RubyPort *>(&owner);
176  DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
177 
178  // send next cycle
180  pkt, curTick() + rp->m_ruby_system->clockPeriod());
181  return true;
182 }
183 
185 {
186  // got a response from a device
187  assert(pkt->isResponse());
188 
189  // First we must retrieve the request port from the sender State
190  RubyPort::SenderState *senderState =
192  MemSlavePort *port = senderState->port;
193  assert(port != NULL);
194  delete senderState;
195 
196  // In FS mode, ruby memory will receive pio responses from devices
197  // and it must forward these responses back to the particular CPU.
198  DPRINTF(RubyPort, "Pio response for address %#x, going to %s\n",
199  pkt->getAddr(), port->name());
200 
201  // attempt to send the response in the next cycle
202  RubyPort *rp = static_cast<RubyPort *>(&owner);
203  port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());
204 
205  return true;
206 }
207 
208 bool
210 {
211  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
212 
213  for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
214  AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
215  for (auto it = l.begin(); it != l.end(); ++it) {
216  if (it->contains(pkt->getAddr())) {
217  // generally it is not safe to assume success here as
218  // the port could be blocked
219  bool M5_VAR_USED success =
220  ruby_port->master_ports[i]->sendTimingReq(pkt);
221  assert(success);
222  return true;
223  }
224  }
225  }
226  panic("Should never reach here!\n");
227 }
228 
229 bool
231 {
232  DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
233  pkt->getAddr(), id);
234  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
235 
236  if (pkt->cacheResponding())
237  panic("RubyPort should never see request with the "
238  "cacheResponding flag set\n");
239 
240  // Check for pio requests and directly send them to the dedicated
241  // pio port.
242  if (pkt->cmd != MemCmd::MemFenceReq) {
243  if (!isPhysMemAddress(pkt->getAddr())) {
244  assert(ruby_port->memMasterPort.isConnected());
245  DPRINTF(RubyPort, "Request address %#x assumed to be a "
246  "pio address\n", pkt->getAddr());
247 
248  // Save the port in the sender state object to be used later to
249  // route the response
250  pkt->pushSenderState(new SenderState(this));
251 
252  // send next cycle
253  RubySystem *rs = ruby_port->m_ruby_system;
254  ruby_port->memMasterPort.schedTimingReq(pkt,
255  curTick() + rs->clockPeriod());
256  return true;
257  }
258 
259  assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
261  }
262 
263  // Submit the ruby request
264  RequestStatus requestStatus = ruby_port->makeRequest(pkt);
265 
266  // If the request successfully issued then we should return true.
267  // Otherwise, we need to tell the port to retry at a later point
268  // and return false.
269  if (requestStatus == RequestStatus_Issued) {
270  // Save the port in the sender state object to be used later to
271  // route the response
272  pkt->pushSenderState(new SenderState(this));
273 
274  DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
275  pkt->getAddr());
276  return true;
277  }
278 
279  if (pkt->cmd != MemCmd::MemFenceReq) {
281  "Request for address %#x did not issued because %s\n",
282  pkt->getAddr(), RequestStatus_to_string(requestStatus));
283  }
284 
285  addToRetryList();
286 
287  return false;
288 }
289 
290 void
292 {
293  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
294 
295  //
296  // Unless the requestor do not want retries (e.g., the Ruby tester),
297  // record the stalled M5 port for later retry when the sequencer
298  // becomes free.
299  //
300  if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
301  ruby_port->addToRetryList(this);
302  }
303 }
304 
305 void
307 {
308  DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
309 
310  RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
311  RubySystem *rs = rp->m_ruby_system;
312 
313  // Check for pio requests and directly send them to the dedicated
314  // pio port.
315  if (!isPhysMemAddress(pkt->getAddr())) {
316  DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
317  assert(rp->pioMasterPort.isConnected());
318  rp->pioMasterPort.sendFunctional(pkt);
319  return;
320  }
321 
322  assert(pkt->getAddr() + pkt->getSize() <=
324 
325  if (access_backing_store) {
326  // The attached physmem contains the official version of data.
327  // The following command performs the real functional access.
328  // This line should be removed once Ruby supplies the official version
329  // of data.
330  rs->getPhysMem()->functionalAccess(pkt);
331  } else {
332  bool accessSucceeded = false;
333  bool needsResponse = pkt->needsResponse();
334 
335  // Do the functional access on ruby memory
336  if (pkt->isRead()) {
337  accessSucceeded = rs->functionalRead(pkt);
338  } else if (pkt->isWrite()) {
339  accessSucceeded = rs->functionalWrite(pkt);
340  } else {
341  panic("Unsupported functional command %s\n", pkt->cmdString());
342  }
343 
344  // Unless the requester explicitly said otherwise, generate an error if
345  // the functional request failed
346  if (!accessSucceeded && !pkt->suppressFuncError()) {
347  fatal("Ruby functional %s failed for address %#x\n",
348  pkt->isWrite() ? "write" : "read", pkt->getAddr());
349  }
350 
351  // turn packet around to go back to requester if response expected
352  if (needsResponse) {
353  pkt->setFunctionalResponseStatus(accessSucceeded);
354  }
355 
356  DPRINTF(RubyPort, "Functional access %s!\n",
357  accessSucceeded ? "successful":"failed");
358  }
359 }
360 
361 void
363 {
364  DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
365  pkt->getAddr());
366 
367  // The packet was destined for memory and has not yet been turned
368  // into a response
369  assert(system->isMemAddr(pkt->getAddr()));
370  assert(pkt->isRequest());
371 
372  // First we must retrieve the request port from the sender State
373  RubyPort::SenderState *senderState =
375  MemSlavePort *port = senderState->port;
376  assert(port != NULL);
377  delete senderState;
378 
379  port->hitCallback(pkt);
380 
381  trySendRetries();
382 }
383 
384 void
386 {
387  //
388  // If we had to stall the MemSlavePorts, wake them up because the sequencer
389  // likely has free resources now.
390  //
391  if (!retryList.empty()) {
392  // Record the current list of ports to retry on a temporary list
393  // before calling sendRetryReq on those ports. sendRetryReq will cause
394  // an immediate retry, which may result in the ports being put back on
395  // the list. Therefore we want to clear the retryList before calling
396  // sendRetryReq.
398 
399  retryList.clear();
400 
401  for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
403  "Sequencer may now be free. SendRetry to port %s\n",
404  (*i)->name());
405  (*i)->sendRetryReq();
406  }
407  }
408 }
409 
410 void
412 {
413  //If we weren't able to drain before, we might be able to now.
414  if (drainState() == DrainState::Draining) {
415  unsigned int drainCount = outstandingCount();
416  DPRINTF(Drain, "Drain count: %u\n", drainCount);
417  if (drainCount == 0) {
418  DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
419  signalDrainDone();
420  }
421  }
422 }
423 
426 {
427  if (isDeadlockEventScheduled()) {
429  }
430 
431  //
432  // If the RubyPort is not empty, then it needs to clear all outstanding
433  // requests before it should call signalDrainDone()
434  //
435  DPRINTF(Config, "outstanding count %d\n", outstandingCount());
436  if (outstandingCount() > 0) {
437  DPRINTF(Drain, "RubyPort not drained\n");
438  return DrainState::Draining;
439  } else {
440  return DrainState::Drained;
441  }
442 }
443 
444 void
446 {
447  bool needsResponse = pkt->needsResponse();
448 
449  // Unless specified at configuraiton, all responses except failed SC
450  // and Flush operations access M5 physical memory.
451  bool accessPhysMem = access_backing_store;
452 
453  if (pkt->isLLSC()) {
454  if (pkt->isWrite()) {
455  if (pkt->req->getExtraData() != 0) {
456  //
457  // Successful SC packets convert to normal writes
458  //
459  pkt->convertScToWrite();
460  } else {
461  //
462  // Failed SC packets don't access physical memory and thus
463  // the RubyPort itself must convert it to a response.
464  //
465  accessPhysMem = false;
466  }
467  } else {
468  //
469  // All LL packets convert to normal loads so that M5 PhysMem does
470  // not lock the blocks.
471  //
472  pkt->convertLlToRead();
473  }
474  }
475 
476  // Flush, acquire, release requests don't access physical memory
477  if (pkt->isFlush() || pkt->cmd == MemCmd::MemFenceReq) {
478  accessPhysMem = false;
479  }
480 
481  if (pkt->req->isKernel()) {
482  accessPhysMem = false;
483  needsResponse = true;
484  }
485 
486  DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
487 
488  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
489  RubySystem *rs = ruby_port->m_ruby_system;
490  if (accessPhysMem) {
491  rs->getPhysMem()->access(pkt);
492  } else if (needsResponse) {
493  pkt->makeResponse();
494  }
495 
496  // turn packet around to go back to requester if response expected
497  if (needsResponse) {
498  DPRINTF(RubyPort, "Sending packet back over port\n");
499  // Send a response in the same cycle. There is no need to delay the
500  // response because the response latency is already incurred in the
501  // Ruby protocol.
502  schedTimingResp(pkt, curTick());
503  } else {
504  delete pkt;
505  }
506 
507  DPRINTF(RubyPort, "Hit callback done!\n");
508 }
509 
512 {
513  // at the moment the assumption is that the master does not care
514  AddrRangeList ranges;
515  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
516 
517  for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
518  ranges.splice(ranges.begin(),
519  ruby_port->master_ports[i]->getAddrRanges());
520  }
521  for (const auto M5_VAR_USED &r : ranges)
522  DPRINTF(RubyPort, "%s\n", r.to_string());
523  return ranges;
524 }
525 
526 bool
528 {
529  RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
530  return ruby_port->system->isMemAddr(addr);
531 }
532 
533 void
535 {
536  DPRINTF(RubyPort, "Sending invalidations.\n");
537  // Allocate the invalidate request and packet on the stack, as it is
538  // assumed they will not be modified or deleted by receivers.
539  // TODO: should this really be using funcMasterId?
540  Request request(address, RubySystem::getBlockSizeBytes(), 0,
542  // Use a single packet to signal all snooping ports of the invalidation.
543  // This assumes that snooping ports do NOT modify the packet/request
544  Packet pkt(&request, MemCmd::InvalidateReq);
545  for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
546  // check if the connected master port is snooping
547  if ((*p)->isSnooping()) {
548  // send as a snoop request
549  (*p)->sendTimingSnoopReq(&pkt);
550  }
551  }
552 }
553 
554 void
556 {
557  RubyPort &r = static_cast<RubyPort &>(owner);
558  r.gotAddrRanges--;
559  if (r.gotAddrRanges == 0 && FullSystem) {
561  }
562 }
std::vector< MemSlavePort * > slave_ports
Definition: RubyPort.hh:195
RubyTester::SenderState SenderState
Definition: Check.cc:37
#define DPRINTF(x,...)
Definition: trace.hh:212
This master id is used for functional requests that don't come from a particular device.
Definition: request.hh:201
void functionalAccess(PacketPtr pkt)
Perform an untimed memory read or write without changing anything but the memory itself.
bool isLLSC() const
Definition: packet.hh:527
bool recvTimingReq(PacketPtr pkt)
Receive a timing request from the master port.
Definition: RubyPort.cc:230
bool isMemAddr(Addr addr) const
Check if a physical address is within a range of a memory that is part of the global address map...
Definition: system.cc:371
const std::string & name()
Definition: trace.cc:49
PioSlavePort(const std::string &_name, RubyPort *_port)
Definition: RubyPort.cc:147
Bitfield< 7 > i
Definition: miscregs.hh:1378
DrainState
Object drain/handover states.
Definition: drain.hh:71
#define panic(...)
Definition: misc.hh:153
Running normally.
SimpleMemory * getPhysMem()
Definition: RubySystem.hh:80
void init() override
init() is called after all C++ SimObjects have been created and all ports are connected.
Definition: RubyPort.cc:84
AbstractController * m_controller
Definition: RubyPort.hh:190
std::vector< MemSlavePort * > retryList
Definition: RubyPort.hh:223
bool isPhysMemAddress(Addr addr) const
Definition: RubyPort.cc:527
bool recvTimingResp(PacketPtr pkt)
Receive a timing response from the slave port.
Definition: RubyPort.cc:184
uint64_t getExtraData() const
Accessor function for store conditional return value.
Definition: request.hh:672
The QueuedMasterPort combines two queues, a request queue and a snoop response queue, that both share the same port.
Definition: qport.hh:107
ip6_addr_t addr
Definition: inet.hh:335
bool isWrite() const
Definition: packet.hh:503
bool FullSystem
The FullSystem variable can be used to determine the current mode of simulation.
Definition: root.cc:146
bool functionalRead(Packet *ptr)
Definition: RubySystem.cc:399
void trySendRetries()
Definition: RubyPort.cc:385
virtual int outstandingCount() const =0
A queued port is a port that has an infinite queue for outgoing packets and thus decouples the module...
Definition: qport.hh:59
bool suppressFuncError() const
Definition: packet.hh:622
virtual BaseSlavePort & getSlavePort(const std::string &if_name, PortID idx=InvalidPortID)
Get a slave port with a given name and index.
Definition: mem_object.cc:58
bool functionalWrite(Packet *ptr)
Definition: RubySystem.cc:482
bool isRequest() const
Definition: packet.hh:505
bool recvTimingReq(PacketPtr pkt)
Receive a timing request from the master port.
Definition: RubyPort.cc:209
A BaseSlavePort is a protocol-agnostic slave port, responsible only for the structural connection to ...
Definition: port.hh:139
RubySystem * m_ruby_system
Definition: RubyPort.hh:188
SimpleMemory declaration.
STL vector class.
Definition: stl.hh:40
void setFunctionalResponseStatus(bool success)
Definition: packet.hh:869
bool onRetryList(MemSlavePort *port)
Definition: RubyPort.hh:198
system
Definition: isa.cc:226
Tick curTick()
The current simulated tick.
Definition: core.hh:47
void convertScToWrite()
It has been determined that the SC packet should successfully update memory.
Definition: packet.hh:678
std::string csprintf(const char *format, const Args &...args)
Definition: cprintf.hh:161
void hitCallback(PacketPtr pkt)
Definition: RubyPort.cc:445
void ruby_eviction_callback(Addr address)
Definition: RubyPort.cc:534
void addToRetryList(MemSlavePort *port)
Definition: RubyPort.hh:203
PioSlavePort pioSlavePort
Definition: RubyPort.hh:210
virtual MessageBuffer * getMandatoryQueue() const =0
MemMasterPort(const std::string &_name, RubyPort *_port)
Definition: RubyPort.cc:154
System * system
Definition: RubyPort.hh:193
unsigned int gotAddrRanges
Definition: RubyPort.hh:213
uint32_t m_version
Definition: RubyPort.hh:189
void access(PacketPtr pkt)
Perform an untimed memory access and update all the state (e.g.
#define fatal(...)
Definition: misc.hh:163
const RequestPtr req
A pointer to the original request.
Definition: packet.hh:304
virtual bool isDeadlockEventScheduled() const =0
bool needsResponse() const
Definition: packet.hh:516
Addr getOffset(Addr addr)
Definition: Address.cc:106
MemObjectParams Params
Definition: mem_object.hh:63
virtual void descheduleDeadlockEvent()=0
void recvRangeChange()
Called to receive an address range change from the peer slave port.
Definition: RubyPort.cc:555
bool isRead() const
Definition: packet.hh:502
void ruby_hit_callback(PacketPtr pkt)
Definition: RubyPort.cc:362
uint64_t Addr
Address type This will probably be moved somewhere else in the near future.
Definition: types.hh:142
bool cacheResponding() const
Definition: packet.hh:558
void convertLlToRead()
When ruby is in use, Ruby will monitor the cache line and the phys memory should treat LL ops as norm...
Definition: packet.hh:690
Draining buffers pending serialization/handover.
T safe_cast(U ptr)
Definition: cast.hh:61
A Packet is used to encapsulate a transfer between two objects in the memory system (e...
Definition: packet.hh:245
PioMasterPort(const std::string &_name, RubyPort *_port)
Definition: RubyPort.cc:139
Addr makeLineAddress(Addr addr)
Definition: Address.cc:112
void recvFunctional(PacketPtr pkt)
Receive a functional request packet from the master port.
Definition: RubyPort.cc:306
void sendRangeChange() const
Called by the owner to send a range change.
Definition: port.hh:410
PioMasterPort pioMasterPort
Definition: RubyPort.hh:209
static const int NumArgumentRegs M5_VAR_USED
Definition: process.cc:83
MessageBuffer * m_mandatory_q_ptr
Definition: RubyPort.hh:191
void makeResponse()
Take a request packet and modify it in place to be suitable for returning as a response to that reque...
Definition: packet.hh:845
Tick clockPeriod() const
void testDrainComplete()
Definition: RubyPort.cc:411
bool isKernel() const
Definition: request.hh:781
virtual const std::string name() const
Definition: sim_object.hh:117
RubyPort(const Params *p)
Definition: RubyPort.cc:54
const std::string & cmdString() const
Return the string name of the cmd field (for debugging and tracing).
Definition: packet.hh:497
MemCmd cmd
The command field of the packet.
Definition: packet.hh:301
The MemObject class extends the ClockedObject with accessor functions to get its master and slave por...
Definition: mem_object.hh:60
A BaseMasterPort is a protocol-agnostic master port, responsible only for the structural connection t...
Definition: port.hh:115
void signalDrainDone() const
Signal that an object is drained.
Definition: drain.hh:267
void schedTimingResp(PacketPtr pkt, Tick when, bool force_order=false)
Schedule the sending of a timing response.
Definition: qport.hh:91
DrainState drainState() const
Return the current drain state of an object.
Definition: drain.hh:282
void pushSenderState(SenderState *sender_state)
Push a new sender state to the packet and make the current sender state the predecessor of the new on...
Definition: packet.cc:329
MemMasterPort memMasterPort
Definition: RubyPort.hh:211
SenderState * popSenderState()
Pop the top of the state stack and return a pointer to it.
Definition: packet.cc:337
std::vector< PioMasterPort * > master_ports
Definition: RubyPort.hh:217
int16_t PortID
Port index/ID type, and a symbolic name for an invalid port id.
Definition: types.hh:181
unsigned getSize() const
Definition: packet.hh:649
Bitfield< 11 > id
Definition: miscregs.hh:124
BaseSlavePort & getSlavePort(const std::string &if_name, PortID idx=InvalidPortID) override
Get a slave port with a given name and index.
Definition: RubyPort.cc:116
MemSlavePort memSlavePort
Definition: RubyPort.hh:212
Bitfield< 0 > p
Bitfield< 9, 8 > rs
Definition: miscregs.hh:1560
bool recvTimingResp(PacketPtr pkt)
Receive a timing response from the slave port.
Definition: RubyPort.cc:173
AddrRangeList getAddrRanges() const
Get a list of the non-overlapping address ranges the owner is responsible for.
Definition: RubyPort.cc:511
std::vector< MemSlavePort * >::iterator CpuPortIter
Vector of M5 Ports attached to this Ruby port.
Definition: RubyPort.hh:216
Bitfield< 5 > l
static uint32_t getBlockSizeBytes()
Definition: RubySystem.hh:74
virtual BaseMasterPort & getMasterPort(const std::string &if_name, PortID idx=InvalidPortID)
Get a master port with a given name and index.
Definition: mem_object.cc:52
BaseMasterPort & getMasterPort(const std::string &if_name, PortID idx=InvalidPortID) override
Get a master port with a given name and index.
Definition: RubyPort.cc:91
DrainState drain() override
Notify an object that it needs to drain its state.
Definition: RubyPort.cc:425
MemSlavePort(const std::string &_name, RubyPort *_port, bool _access_backing_store, PortID id, bool _no_retry_on_stall)
Definition: RubyPort.cc:162
bool isResponse() const
Definition: packet.hh:506
Addr getAddr() const
Definition: packet.hh:639
bool isFlush() const
Definition: packet.hh:530

Generated on Fri Jun 9 2017 13:03:50 for gem5 by doxygen 1.8.6